Browse > Article
http://dx.doi.org/10.4014/jmb.0907.07021

Diversity and Abundance of Ammonia-Oxidizing Bacteria in Activated Sludge Treating Different Types of Wastewater  

Baek, Kyung-Hwa (Environmental Biotechnology Research Center, KRIBB)
Park, Chul (Department of Civil and Environmental Engineering, University of Massachusetts)
Oh, Hee-Mock (Environmental Biotechnology Research Center, KRIBB)
Yoon, Byung-Dae (Environmental Biotechnology Research Center, KRIBB)
Kim, Hee-Sik (Environmental Biotechnology Research Center, KRIBB)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.7, 2010 , pp. 1128-1133 More about this Journal
Abstract
The diversity and abundance of ammonia-oxidizing bacteria (AOB) in activated sludge were compared using PCR-DGGE and real-time PCR assays. Activated sludge samples were collected from five different types of wastewater treatment plants (WWTPs) mainly treating textile, paper, food, and livestock wastewater or domestic sewage. The composition of total bacteria determined by PCR-DGGE was highly diverse between the samples, whereas the community of AOB was similar across all the investigated activated sludge. Total bacterial numbers and AOB numbers in the aerated mixed liquor were in the range of $1.8{\times}10^{10}$ to $3.8{\times}10^{12}$ and $1.7{\times}10^6$ to $2.7{\times}10^{10}$ copies/l, respectively. Activated sludge from livestock, textile, and sewage treating WWTPs contained relatively high amoA gene copies (more than $10^5$ copies/l), whereas activated sludge from food and paper WWTPs revealed a low number of the amoA gene (less than $10^3$ copies/l). The value of the amoA gene copy effectively showed the difference in composition of bacteria in different activated sludge samples and this was better than the measurement with the AOB 16S rRNA or total 16S rRNA gene. These results suggest that the quantification of the amoA gene can help monitor AOB and ammonia oxidation in WWTPs.
Keywords
Ammonia-oxidizing bacteria; activated sludge; PCR-DGGE; real-time PCR; wastewater;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Tawan, L., S. Yuko, K. Futoshi, and Y. Osami. 2005. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 54: 205-217.   DOI   ScienceOn
2 Okano, Y., K. R. Hristova, C. M. Leutenegger, L. E. Jackson, R. F. Denison, B. Gebreyesus, D. Lebauer, and K. M. Scow. 2004. Amplification of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbiol. 70: 1008-1016.   DOI   ScienceOn
3 Nicolaisen, M. H. and N. B. Ramsing. 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203.   DOI   ScienceOn
4 Curtis, T. P. and N. G. Craine. 1998. The comparison of the diversity of activated sludge plants. Water Sci. Technol. 37: 71-78.
5 Dionisi, H. M., G. Hamrs, A. C. Layton, I. R. Gregory, J. Parker, S. A. Hawkins, K. G. Robinson, and G. S. Sayler. 2003. Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extraction. Appl. Environ. Microbiol. 69: 6597-6604.   DOI   ScienceOn
6 Harms, G., A. C. Layton, H. M. Dionisi, I. R. Garrett, S. A. Hawkins, K. G. Robinson, and G. Sayler. 2003 Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37: 343-351.   DOI   ScienceOn
7 Juretschko, S., G. Timmermann, M. Schmid, K. Scheifer, A. Pommerening-Roser, H. Koops, and M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospiralike bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042-3051.
8 Heid, C. A., J. Stevens, K. J. Livak, and P. M. Williams. 1996 Real-time quantitative PCR. Gen. Res. 6: 986-994.   DOI   ScienceOn
9 Wagner, M. and A. Loy. 2002. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13: 218-227.   DOI   ScienceOn
10 Arlene, K. R., J. R. Snape, D. Fearnside, M. R. Barer, T. P. Curtis, and I. M. Head. 2003. Composition and diversity of ammonia-oxidizing bacterial communities in wastewater treatment reactors of different design treating identical wastewater. FEMS Microbiol. Ecol. 43: 195-206.   DOI   ScienceOn
11 Saikaly, P. E., P. G. Stroot, and D. B. Oerther. 2005. Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solid retention time on the bacterial diversity of activated sludge. Appl. Environ. Microbiol. 71: 5814-5822.   DOI   ScienceOn
12 Rao, P. S. C., R. E. Jessup, and K. R. Reddy. 1984. Simulation of nitrogen dynamics in flooded soils. Soil Sci. 138: 54-62.   DOI
13 Purkhold, U., A. Pommerening-Roser, S. Juretschko, M. C. Schmid, H. Koops, and M. Wagner. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microbiol. 66: 5368-5382.   DOI   ScienceOn
14 Rotthauwe, J. H., K. P. Witzel, and W. Liesack. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammoniaoxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712.
15 Shannon, C. E. and W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
16 Tamura, K., M. Nei, and S. Kumar. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. U.S.A. 101: 11030-11035.   DOI   ScienceOn
17 Layton, A. C., H. M. Dionisi, H. W. Kuo, K. G. Robinson, V. M. Garrett, A. Meyers, and G. S. Salyer. 2005. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Appl. Environ. Microbiol. 71: 1105-1108.   DOI   ScienceOn
18 Wagner, M., G. Rath, G. Amann, H. Koops, and K. Schleifer. 1995 In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 18: 251-264.   DOI   ScienceOn
19 Tawan, L., K. Futoshi, and Y. Osami. 2006. Development and application of real-time PCR for quantification of specific ammonia-oxidizing bacteria in activated sludge of sewage treatment systems, Appl. Microbiol. Biotechnol. 72: 1004-1013.   DOI   ScienceOn
20 Kowalchuk, G. A., J. R. Stephen, W. de Boer, J. I. Prosser, T. M. Embley, and J. W. Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63:1489-1497.
21 Limpiyakorn, T., Y. Shinohara, F. Kurisu, and O. Yagi. 2005. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 54: 205-217.   DOI   ScienceOn
22 Lopez-Gutierrez, J. C., S. Henry, S. Hallet, F. Martin-Laurent, G. Catroux, and L. Philippot. 2004. Quantification of a novel group of nitrate-reducing bacteria in environment by real-time PCR. J. Microbiol. Methods 57: 399-407.   DOI   ScienceOn
23 Muyzer, G., E. C. de Waal, and A. Uitterlinden. 1993. Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
24 Boon, N., W. D. Windt, W. Verstraete, and E. M. Top. 2002. Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol. Ecol. 39: 101-112.
25 Baldwin, B., C. H. Nakatsu, and L. Nies. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl. Environ. Microbiol. 69: 3350-3358.   DOI   ScienceOn