• Title/Summary/Keyword: paper surface strength

Search Result 1,007, Processing Time 0.025 seconds

A STUDY ON THE SHEAR BOND STRENGTH OF LIGHT CURED GLASS IONOMER CEMENTS TO CONTAMINATED DENTIN (상아질 표면상태에 따른 광중합형 글래스아이오노머 시멘트의 전단결합강도에 관한 연구)

  • Kim, Kyoung-Hwa;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.609-621
    • /
    • 1997
  • The purpose of this study was to evaluate the shear bond strength of three light-cured glass ionomer cements to blood contaminated bovine dentin. The materials used in this study were Fuji II LC, Dyract and Variglass VLC. The dentin conditioners were 10% polyacrylic acid, 10% maleic acid and 10% phosphoric acid. 180 lower anterior bovine teeth were selected in this study. The teeth were embedded in acrylic resin and were grounded with 320 to 600 grit silicon carbide paper to create a flat dentin surface. The teeth were divided into SIX groups. The experimental procedures in six groups were as follows; Group l(GF) : Samples bonded to dentin surface with Fuji II LC after 10% polyacrylic acid treatment. Group 2(BGF) : Samples bonded to dentin surface with Fuji II LC after 10% polyacrylic acid treatment and blood contamination. Group 3(MD) : Samples bonded to dentin surface with Dyract after 10% maleic acid treatment. Group 4(BMD) : Samples bonded to dentin surface with Dyract after 10% maleic acid treatment and blood contamination. Group 5(PV) : Samples bonded to dentin surface with Variglass VLC after 10% phosphoric acid treatment. Group 6(BPV) : Samples bonded-to dentin surface with Variglass VLC after 10% phosphoric acid treatment and blood contamination. Group 1,3 and 5 were classified into the control groups, while group 2,4 and 6 were classified into the experimental groups. Each group contained 30 samples. After 24 hours water storage at $37^{\circ}C$, all smples were subjected to a shear load to fracture at a cross head speed of 1.0 mm/min with Instron universal testing machine(No. 4467). Debonded surfaces were observed under Scanning Electron Microscope(Hitachi S-2300) at 20kvp. The data were evaluated statistically at the 95% confidence level with Student's t-test. The following results obtained; 1. Shear bond strengths were higher in the control groups(1,3,5 group) than in the experimental groups(2,4,6 group). 2. The shear bond strength of group 5(PV) was the highest in the control groups, and the group 5 was significantly higher than the group l(GF) on the shear bond strength. 3. The group 4(BMD) was the highest on the shear bond strength, and the group 2(BGF) was the lowest in the experimental groups. The group 4(BMD) and 6(BPV) showed a significant difference with the group 2 on the shear bond strength. 4. All the groups showed an adhesive-cohesive failure. except the group 2(BGF) showing adhesive failure.

  • PDF

Strength Assessment of T-type Lifting Lugs Considering Deformation of Blocks (블록의 변형을 고려한 T형 리프팅 러그의 강도 평가)

  • Lee, Joo-Sung;Kim, Min-Sul
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.309-316
    • /
    • 2015
  • Lifting lugs are frequently used in shipyards to transport and turn over the blocks of ships and offshore structures. With the development of shipbuilding technology, blocks have increased in size, and block management technology has assumed a more important role in shipbuilding to enhance the productivity. For the sake of economics, as well as the safe design of a lug structure, a more rational design procedure based on a rigorous structural analysis is needed. This study investigated the strength characteristics of T-type lugs, considering the influence of blocks on which lugs are attached, by varying the in-plane and out-of-plane load direction. In this paper, the ultimate strength is also addressed for cases that include or do not include blocks in the strength analysis. In the present results, when there was a load acting in the normal direction to the block surface, the strength characteristics became poor, and the ultimate strength decreased. This paper ends by describing the need for further study to develop a more rational design for a lug structure.

Recent Advances in Carbon-Nanotube-Based Epoxy Composites

  • Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • Carbon nanotubes (CNTs) are increasingly attracting scientific and industrial interest because of their outstanding characteristics, such as a high Young's modulus and tensile strength, low density, and excellent electrical and thermal properties. The incorporation of CNTs into polymer matrices greatly improves the electrical, thermal, and mechanical properties of the materials. Surface modification of CNTs can improve their processibility and dispersion within the composites. This paper aims to review the surface modification of CNTs, processing technologies, and mechanical and electrical properties of CNT-based epoxy composites.

Studies on The Paper Making Technique and TsaiLun (제지술과 채륜에 관한 연구)

  • JongchanLee
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.14 no.2
    • /
    • pp.81-99
    • /
    • 1996
  • The characteristics of printing inks are affected, to a greater or lesser extent, by the size and distribution of the pigment particles in the dispersion. Color strength, transparency and gloss increase with a decrease in particle size of pigments and with an increase in surface area of pigments. On the contrary, opacity and lightfastness tend to increases with an increase in particle size of pigments and with a decrease in surface are and particle size if pigments on the physical properties of printing ink which made up vehicles for sheet fed and organic pigment Lake Red C(C.I Pigment Red 53:1) that different surface area and particle size.

  • PDF

Surface characterization of polyimides for LCDs by second-harmonic generation technique (SHG을 이용한 LCD 배향막 표면 특성분석)

  • 정태혁;윤태훈;김재창
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.114-122
    • /
    • 1997
  • The surface characteristics of polymers for liquid crystal alignment are studied by optical second-harmonic genertion (SHG) tecnique. Using SHG technique, the LC monolayers on rubbed polymer have already been studied. But, in this paper, the SH signals of polymer were observed and the orientational distribution of oriented polymer was studied. Te SHG experiments for side-chain type and main-chain type polymers are carried out as a function of rubbing strength. The orentational distribution of surface molecules of polymers is compared with the LC pretilt angle measured by the crystal rotation method.

  • PDF

Effects of the Size and Distribution of Preflocculated GCC on the Physical Properties of Paper

  • Lee, Kyong-Ho;Lee, Hak-Lae;Youn, Hye-Jung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.85-90
    • /
    • 2006
  • Increasing the filler content of sheet improves the optical properties and printability of paper and provides an opportunity for saving production cost through fiber replacement with relatively low-priced filler. But increasing the filler content tends to decrease the strength of paper and filler retention. It also tends to deteriorate drainage on the paper machine. To overcome these problems, preflocculation technology of fillers may be employed. Many research efforts have been made on the properties of preflocculated filler, namely prefloc, whose size and size distribution were influenced by polymer type and shear level. But there is much to be investigated about the effect of the prefloc characteristics on the physical properties of paper. To evaluate the effect cationic polymers on the size and size distribution of preflocculated GCC and their shear stability, cationic PAM and cationic starch were used. The influence of the preflocculation on filler retention and its surface distribution, and the changes of physical and optical properties of handsheets affected by the characteristics of preflocs were examined. Filler distribution on sheet surface was also analyzed by EPMA. Results showed that cationic PAM formed large preflocs at low dosage. Cationic starch was required to add 15 times as much as cationic PAM to obtain the preflocs with similar size. But preflocs formed with cationic starch was superior in shear stability to those formed with cationic PAM. Filler preflocculation technology could provide an opportunity of increasing filler content significantly without loss in tensile strength. And increased filler contents could compensate brightness loss which often accompanies filler preflocculation. When excessively large preflocs were used, however, brightness loss rather than the improvement in tensile strength was predominant. Therefore it is of great importance to produce preflocs with proper size and shear stability for maximizing the improvement of physical properties of papers.

  • PDF

Manufacture of Specialty Paper with Hemp Bast Fiber Cultivated in Korea (Part 1) - Characteristics of Hemp-Wood Paper by Soda Pulping - (삼섬유를 이용한 특수기능지 개발 (제 1보) - 소다펄프화 삼 섬유의 수초지 특성 -)

  • Lee, Dah-Hee;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.30-35
    • /
    • 2013
  • To conserve wood resources for papermaking, chemical compositions of the hemp (Cannabis sativa L.) bast fiber cultivated in Korea such as holocellulose, ${\alpha}$-cellulose, lignin, alcohol-benzene extractives, hot and cold water extractives, and ash contents were investigated to manufacture the specialty packaging paper effectively. Significantly very low klason lignin content of 3.3% was accomplished by removing of the outer shell of bark. Laboratory soda pulping method which is very useful for the nonwood fiber was adapted, and it was found that there was no significant difference in both kappa number and H-factor between 25% and 30% NaOH charge. Hemp pulp cooked with the laboratory digester in 25% NaOH at $170^{\circ}C$ were mixed together with the wood pulp(NBKP:LBKP=1:1) in order to find the optimum mixture ratio which exhibited acceptable paper strength properties such as tensile index, burst index, and tear strength. When 10% of hemp soda pulps was mixed with 90% of wood pulps comprised of SwBKP and HwBKP (1:1), all physical strength increased significantly. The physical strength decreased as the amount of hemp pulp increased because the cell wall of bast fiber is very thick which causes low conformability and low fiber-fiber bonding. These results showed that paper made of hemp-wood pulp can be used for the specialty packaging paper which requires both the characteristic surface properties and the high physical strength of hemp fiber.

The AC Insulation Breakdown Properties of Epoxy/Multi-Alumina Composites for Adding Surface Modified Nano Alumina (표면처리된 나노알루미나가 첨가된 에폭시/멀티-알루미나 콤포지트의 교류절연파괴 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1511-1517
    • /
    • 2016
  • The aim of this study is to improve of properties for electrical AC insulation breakdown strength using epoxy/micro-nano alumina composites with adding glycerol diglycidyl ether (GDE:1,3,5g). This paper deals with the effects of GDE addition for epoxy/micro alumina contents (40,50,60wt%)+surface modified nano alumina(1_phr) composites. 14 kinds specimen were prepared with containing epoxy resins, epoxy micro composites and epoxy nano-micro alumina mixture composites. Average particle size of nano and micro alumina used were 30nm and $1{\sim}2{\mu}m$, respectively. The micro alumina used were alpha phase with Heterogeneous and nano alumina were gamma phase particles of spherical shape. The electrical AC insulation breakdown strength was evaluated by sphere to sphere electrode system and raising velocity 1kV/s. The AC breakdown strength decreased insulation properties of multi-composites according to increasing micro alumina and GDE addition contents.

The stable e-beam deposition of metal layer and patterning on the PDMS substrate (PDMS 기판상에 금속층의 안정적 증착 및 패터닝)

  • Baek, Ju-Yeoul;Kwon, Gu-Han;Lee, Sang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.423-429
    • /
    • 2005
  • In this paper, we proposed the fabrication process of the stable e-beam evaporation and the patterning of metals layer on the polydimethylsiloxane (PDMS) substrate. The metal layer was deposited under the various deposition rate, and its effect to the electrical and mechanical properties (e.g.: adhesion-strength of metal layer) was investigated. The influence of surface roughness to the adhesion-strength was also examined via the tape test. Here, we varied the roughness by changing the reactive ion etching (RIE) duration. The electrode patterning was performed through the conventional photolithography and chemical etching process after e-beam deposition of $200{\AA}$ Ti and $1000{\AA}$ Au. As a result, the adhesion strength of metal layer on the PDMS surface was greatly improved by the oxygen plasma treatment. The e-beam evaporation on the PDMS surface is known to create the wavy topography. Here, we found that such wavy patterns do not effect to the electrical and mechanical properties. In conclusion, the metal patterns with minimum $20{\mu}m$ line width was produced well via the our fabrication process, and its electrical conductance was almost similar to the that of metal patterns on the silicon or glass substrates.

The Effect of Compressive Residual Stress on Fatigue Fracture of the Spring steel (현가장치용 SUP-9강의 피로파괴에 미치는 압축잔류응력의 영향)

  • Park, Kyoung-Dong;Jin, Young-Beom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.79-85
    • /
    • 2004
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. Currently, the shot peening is used for removing the defects from the surface of steel and improving the fatigue strength on surface. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9)by shot peening on fatigue crack growth characteristics in stress ratio(R=0 1, R=0 3, R=0 6)was investigated considering fracture mechanics. By using the methods mentioned above, I arrived at the following conclusions: (1) The fatigue crack growth rate(da/dN) of the shot peening material was lower than the unpeening material And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot peening material is high in critical parts unlike the unpeening material. (2) Fatigue life shows more Improvement in the shot peening material than in the unpeening material. And compressive residual stress of surface on the shot peening processed operate the resistance of fatigue crack propagation.

  • PDF