• 제목/요약/키워드: paper sensor

검색결과 12,494건 처리시간 0.036초

센서 네트워크를 위한 부가적인 암호모듈의 구조 분석 (Analyses of additive Crypto-module Architecture for a Sensor Network)

  • 김정태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.795-798
    • /
    • 2005
  • In this paper, we analyses of additive crypto-module architecture for a sensor network. Recent research in sensor networks has raised security issues for small embedded devices. Security concerns are motivated by the development of a large number of sensor devices in the field. Limitations in processing power, battery life, communication bandwidth and memoryconstrain devices. A mismatch between wide arithmetic for security and embedded data buscombined with lack of certain operations. Then, we compared the architecture of crypto-module in this paper.

  • PDF

Survivability Evaluation Model in Wireless Sensor Network using Software Rejuvenation

  • Parvin, Sazia;Thein, Thandar;Kim, Dong-Seong;Park, Jong-Sou
    • 융합보안논문지
    • /
    • 제8권1호
    • /
    • pp.91-100
    • /
    • 2008
  • The previous works in sensor networks security have focused on the aspect of confidentiality, authentication and integrity based on cryptographic primitives. There has been no prior work to assess the survivability in systematic way. Accordingly, this paper presents a survivability model of wireless sensor networks using software rejuvenation for dual adaptive cluster head. The survivability model has state transition to reflect status of real wireless sensor networks. In this paper, we only focus on a survivability model which is capable of describing cluster head compromise in the networks and able to switch over the redundant cluster head in order to increase the survivability of that cluster. Second, this paper presents how to enhance the survivability of sensor networks using software rejuvenation methodology for dual cluster head in wireless sensor network. We model and analyze each cluster as a stochastic process based on Semi Markov Process (SMP) and Discrete Time Markov Chain (DTMC). The proof of example scenarios and numerical analysis shows the feasibility of our approach.

  • PDF

무인선박의 자율운항을 위한 저가형 LiDAR센서 기반의 장애물 회피 시스템 구현 (Implementation of an Obstacle Avoidance System Based on a Low-cost LiDAR Sensor for Autonomous Navigation of an Unmanned Ship)

  • 송현우;이광국;김동헌
    • 전기학회논문지
    • /
    • 제68권3호
    • /
    • pp.480-488
    • /
    • 2019
  • In this paper, we propose an obstacle avoidance system for an unmanned ship to navigate safely in dynamic environments. Also, in this paper, one-dimensional low-cost lidar sensor is used, and a servo motor is used to implement the lidar sensor in a two-dimensional space. The distance and direction of an obstacle are measured through the two-dimensional lidar sensor. The unmanned ship is controlled by the application at a Tablet PC. The user inputs the coordinates of the destination in Google maps. Then the position of the unmanned ship is compared with the position of the destination through GPS and a geomagnetic sensor. If the unmanned ship finds obstacles while moving to its destination, it avoids obstacles through a fuzzy control-based algorithm. The paper shows that the experimental results can effectively construct an obstacle avoidance system for an unmanned ship with a low-cost LiDAR sensor using fuzzy control.

센서노드 선정기법 기반 수중 무선센서망 분산형 표적추적필터 (Sensor Nodes Selecting Schemes-based Distributed Target Tracking Filter for Underwater Wireless Sensor Networks)

  • 유창호;최재원
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.694-701
    • /
    • 2013
  • This paper deals with the problem of accurately tracking a single target moving through UWSNs (Underwater Wireless Sensor Networks) by employing underwater acoustic sensors. This paper addresses the issues of estimating the states of the target, and improving energy efficiency by applying a Kalman filter in a distributed architecture. Each underwater wireless sensor nodes composing the UWSNs is battery-powered, so the energy conservation problem is a critical issue. This paper provides an algorithm which increases the energy efficiency of each sensor node through WuS (Waked-up/Sleeping) and VM (Valid Measurement) selecting schemes. Simulation results illustrate the performance of the distributed tracking filter.

손가락 힘측정장치의 3축 힘센서 설계 (Design of a Three-Axis Force Sensor for Finger Force Measuring System)

  • 이경준;김갑순
    • 센서학회지
    • /
    • 제25권2호
    • /
    • pp.110-115
    • /
    • 2016
  • This paper describes the design and fabrication of a three-axis force sensor with three parallel plate structures(PPSs) for measuring force in a finger force measuring system for a spherical object catch. The three-axis force sensor is composed of a Fx force sensor, Fy force sensor and a Fz force sensor, and the elements of Fx force sensor and Fy force sensor are a parallel plate structure(PPS) respectively and Fz force sensor is two PPS. The three-axis force sensor was designed using FEM(Finite Element Method), and manufactured using strain-gages. The characteristics test of the three-axis force sensor was carried out. As a test results, the interference error of the three-axis force sensor was less than 1.32%, the repeatability error of each sensor was less than 0.04%, and the non-linearity was less than 0.04%.

스마트 센서 응용 소프트웨어를 테스팅하기 위한 효율적인 방법 (An Effective Method of Testing Application Software of Smart Sensors)

  • 조장우;정환철
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.105-111
    • /
    • 2013
  • 본 논문에서는 스마트 센서 응용 소프트웨어를 테스팅하기 위한 효율적인 방법인 가상 센서 시스템을 제안한다. 센서 응용 소프트웨어를 테스트하는 보편적인 방법은 테스트 보드에 센서를 직접 연결시켜 테스팅 환경의 센서 측정값으로 응용소프트웨어를 테스팅 하는 것이다. 센서 측정값을 입력으로 센서 응용 소프트웨어를 테스팅함으로 발생하는 문제는 테스트 데이터가 제한적이라는 것이다. 즉, 테스트 데이터가 센서로부터 생성되기 때문에 소프트웨어 테스터가 테스트 데이터를 조절하지 못하는 문제가 있다. 이러한 문제를 해결하기 위해 가상센서 시스템을 제안한다. 가상 센서 시스템은 소프트웨어 테스터가 센서의 측정값을 조절할 수 있게 한다. 가상 센서 시스템에서 센서 선택, 센서 특성화, 출력 패턴 정의의 세 단계를 통해 가상 센서를 정의한다. 가상 센서 시스템을 통해 조절 가능한 센서 측정값을 사용함으로써 센서 응용 소프트웨어에 대한 효율적인 테스트가 가능하다. 본 연구의 유용성을 보이기 위해 가상 센서 시스템을 안드로이드 앱의 센서 프로그램에 적용해 보고 실험 결과를 보인다.

기체유량계용 초음파 센서의 설계 및 공진 특성 (Design and Resonant Characteristics of the Ultrasonic Sensor for Gas Flowmeter)

  • 홍재일;이상철
    • 전기학회논문지P
    • /
    • 제51권4호
    • /
    • pp.193-197
    • /
    • 2002
  • In this paper, the ultrasonic sensor for gas flowmeter was simulated, fabricated and measured according to the assembly step and the piezoelectric vibrator layers. The simulated resonant frequency and the measured resonant frequency were similar except two layer sensor. The simulated resonant frequency of three layer sensor was 48 kHz and the measured resonant frequency of three layer sensor was 45.2 kHz. From the results, the ultrasonic sensor for gas flowmeter could be designed and expected without fabrication.

미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발 (Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

Conceptual design and preliminary characterization of serial array system of high-resolution MEMS accelerometers with embedded optical detection

  • Perez, Maximilian;Shkel, Andrei
    • Smart Structures and Systems
    • /
    • 제1권1호
    • /
    • pp.63-82
    • /
    • 2005
  • This paper introduces a technology for robust and low maintenance cost sensor network capable to detect accelerations below a micro-g in a wide frequency bandwidth (above 1,000 Hz). Sensor networks with such performance are critical for navigation, seismology, acoustic sensing, and for the health monitoring of civil structures. The approach is based on the fabrication of an array of high sensitivity accelerometers, each utilizing Fabry-Perot cavity with wavelength-dependent reflectivity to allow embedded optical detection and serialization. The unique feature of the approach is that no local power source is required for each individual sensor. Instead one global light source is used, providing an input optical signal which propagates through an optical fiber network from sensor-to-sensor. The information from each sensor is embedded onto the transmitted light as an intrinsic wavelength division multiplexed signal. This optical "rainbow" of data is then assessed providing real-time sensing information from each sensor node in the network. This paper introduces the Fabry-Perot based accelerometer and examines its critical features, including the effects of imperfections and resolution estimates. It then presents serialization techniques for the creation of systems of arrayed sensors and examines the effects of serialization on sensor response. Finally, a fabrication process is proposed to create test structures for the critical components of the device, which are dynamically characterized.

Fabrication and Characteristics of Micro-Electro-Mechanical-System-Based Gas Flow Sensor

  • Choi, Ju-Chan;Lee, June-Kyoo;Kong, Seong-Ho
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.363-367
    • /
    • 2011
  • This paper proposes a highly-sensitive gas flow sensor with a simple structure. The sensor is composed of a micro-heater for heating the gas medium and a pair of temperature sensors for detecting temperature differences due to gas flow in a sealed chamber on one axis. Operation of the gas flow sensor depends on the transfer of heat through the air medium. The proposed gas flow sensor has the capability to measure gas flow rates <5 $cm^3$/min with a resolution of approximately 0.01 $cm^3$/min. Furthermore, this paper reports some additional experiment results, including the sensitivity of the proposed gas flow sensor as a function of operating current and the flow of different types of gas(oxygen, carbon dioxide, and nitrogen). The fabrication process of the proposed sensor is very simple, making it a good candidate for mass production.