• Title/Summary/Keyword: paper fiber

Search Result 3,675, Processing Time 0.032 seconds

Pulp and Paper from Kenaf Bast Fibers

  • Ashori Alireza
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2006
  • Samples of kenaf (Hibiscus cannabinus) grown in Malaysia were examined to determine the kraft pulp and paper-making properties of their bast (or bark) fibers. Using kraft pulping process showed that bast fibers were relatively easy to cook resulting good pulp yields in the range of 45-51 %. The bast pulp produced sheets with great density, tear index and dry zero-span breaking length. Kenaf bast fiber is considered promising for production of high-grade printing, writing and specialty papers.

A Fundamental Study on the Performance of Spalling Resistance of High Performance Concrete with Material of Lateral Confinement Subjected to Fire (화재시 횡구속재 변화에 따른 고성능 콘크리트의 폭열방지성능에 관한 기초적 연구)

  • 배정렬;황인성;홍상희;한민철;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.47-50
    • /
    • 2002
  • This paper presents the results of fire resistance properties of high performance concrete varying with fiber kinds and the size of metal lath in order to verify the validities of fiber on the spatting resistance by fire. Metal lath, glass fiber and carbon fiber are used to confine the concrete. According to test results, plain concrete without lateral confinement and confined concrete with glass fiber and carbon fiber show entire failure after exposed to fire, while confined concrete with metal lath take place in the form of slight surface spatting by fire, which has favorable spatting resistance of concrete. As for the effect of the size of metal lath, when the size of metal lath is more than 1.2mm of thickness, the residual strength of concrete exposed to fire maintains more than 80% of its original strength. However, glass fiber and carbon fiber does not perform desirable spatting resistance by fire due to loss of lateral confinement of fiber exposed to fire caused by melting of fiber and reducing bond strength between concrete and fiber.

  • PDF

Identification of Hydrophobic Components in Cambodian Kapok Fiber (캄보디아산 케이폭 섬유의 소수성에 영향을 미치는 성분규명)

  • Sung, Yong Joo;Yun, Su-Young;Oh, Sung-Hoon;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.5
    • /
    • pp.30-36
    • /
    • 2013
  • Hydrophobic property of Kapok fiber was investigated by sequential removal of its components by different extraction methods. Acetone extraction for the removal of the hydrophobic extractives, holo-cel-lulose preparation after the removal of lignin and xylan extraction by potassium hydroxide was applied. The degree of hydrophobicity of each samples were measured by the water sorption ability. The water sorption ability of Kapok fiber was increased by the sequential treatment of acetone extraction, holocellulose preparation and xylan removal. Based on holocellulose compositional analysis by $^1H$-NMR spectroscopic method, the unusual high amount of the acetyl groups in the holocellulose of Kapok partially contributed to the hydrophobicity of Kapok holocellulose fiber.

Polymer Adsorption and fiber Dispersion Stability of a Paper Stock Colloidal Suspension with a PAC-PAE Dual Polymer System (PAC-PAE 2중 고분자 내첨 지료의 고분자 흡착 및 교질 분산계의 안정성 연구)

  • 윤성훈;김태영;김덕기;송병규
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.2
    • /
    • pp.18-25
    • /
    • 2003
  • The adsorption of co-cationic dual polymer system was investigated as was the fiber dispersion stability of a paper stock suspension. Polyaluminum chloride(PAC) and polyamidoamine epichlorohy-drin(PAE) polymers were used as wet-end additives. The adsorbed amounts of PAE polymer in a wet stock were measured by using polyelectrolytic PCD titration. The sheet forming experiments were carried out in a standard handsheet machine. Fiber dispersion stability and relative retention were evaluated in terms of M/K non-uniformity index and sheet basis weight, respectively. The PAE polymer adsorption of Langmuir-isothermal type decreased with increasing PAC addition level. The combination of the two cationic polymers presumably exerts a site-blocking effect by the low molecular weight PAC which gives a partial charge neutralization at a minimum level of addition. From a thermodynamic view point of PAE adsorption, an increase in adsorption entropy and a decrease in train number suggests that the PAR polymer has an extended conformation structure that potentially leads to an enhancement of the fiber dispersion stability. This conclusion is supported by handsheet experiments that examined the PAC-PAE dual polymer effects on the sheet formation and retention.

Effects of Substrates on Fiber Digestion Pattern and Fibrolytic Enzyme Production by Neocallimastix frontalis (기질의 종류가 Neocallimastix frontalis에 의한 섬유소 분해양상과 섬유소 분해 효소 생산에 미치는 영향)

  • Sung, H.G.;Lee, Sung.S.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.763-772
    • /
    • 2004
  • The patterns of fungal growth and fiber digestion under the microscope, and tile productions of fibrolytic enzyme were studied in an in vitro culture with Neocallimastix frontalis SA when either filter paper or rice straw was provided as sole energy source. Under the microscopic observation, active zoospores attachment, sporangium development and complex rhizoidal system were founded on the surface and at the edge of filter paper. After 7 days of incubation, a reduced fiber mass, a decreased fiber cohesion and a weakened fiber structure by fungal digestion were clearly observed. Similar fungal development was observed with rice straw, but fungal growth and digestion took place mostly on the damaged and exposed portion of rice straw. Although there were some differences in absolute concentration and pattern, the concentration of both cellulase and xylanase increased with incubation time with the higher activity being obtained with filter paper. Their differences were large especially after 48 and 96hr of incubation(P< 0.05). The filter paper was more good inducer of cellulolytic and xylanolytic enzymes compared with complex substrate, rice straw. These findings suggest that the filter paper is the better energy source for N frontalis than the complex substrate, and structural disintegration by physical process is able to help rumen fungal growth on the lignified roughage although anaerobic rumen fungi have mechanical and enzymatic functions for fiber digestion.

A Study on Fiber Orientation of Compression-Molded Rib type Products (압축성형된 리브형 성형품의 섬유배향에 관한 연구)

  • Jo S. H.;Oh Y. J.;Lee K. S.;Yoon S. U.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.313-318
    • /
    • 2001
  • Compression molding is widely used process for the industrial forming of fiber reinforced plastic articles. Its applications are of an extreme variety and the products range from large parts, such as used in the automotive industry to much smaller objects. In this paper, distribution of fiber orientation by the image processing method for rib type compression molded products of each fiber content is measured. And the effects of fiber content, product size on the orientation state are discussed.

  • PDF

3-Axis Milling Algorithm Development for Carbon Fiber Reinforced Polymer (CFRP) Composites (탄소섬유복합재 3축 밀링 알고리즘 개발)

  • Luo, Shan;Bayesteh, Reza;Dong, Zuomin;Jun, Martin B.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.447-452
    • /
    • 2016
  • The simulation of Carbon fiber reinforced polymer (CFRP) machining facilitates the selection of optimal cutting parameter for high machining efficiency and better surface quality. In this study, This paper proposes a dual-dexel model to represent the fiber laminate with computational geometry method to calculate the fiber length removed per revolution and fiber cutting angles. A flat end milling simulation software is developed in C# to simulate and display the CFRP milling process. During simulation, fiber lengths, fiber cutting angle and engaged cutting angle can be displayed in real-time. A CFRP plate with different angles in different layer is used to compare the simulation results.

Flexural performance and fiber distribution of an extruded DFRCC panel

  • Lee, Bang Yeon;Han, Byung-Chan;Cho, Chang-Geun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.105-119
    • /
    • 2012
  • This paper presents the mix composition and production method that was applied to an extruded Ductile Fiber Reinforced Cement Composite (DFRCC) panel, as well as the flexural performance, represented by deformation hardening behavior with multiple cracking. The effect of fiber distribution characteristics on the flexural behavior of the panel is also addressed. In order to demonstrate the fiber distribution effect, a series of experiments and analyses, including a sectional image analysis and micromechanical analysis, was performed. From the experimental and analysis results, it was found that the flexural behavior of the panel was highly affected by a slight variation in the mix composition. In terms of the average fiber orientation, the fiber distribution was found to be similar to that derived under the assumption of a two-dimensional random distribution, irrespective of the mix composition. In contrast, the probability density function for the fiber orientation was measured to vary depending on the mix composition.

A Study on Mechanical Characteristics of Reinforced Concrete Columns Confined with Carbon Fiber Sheet (CFS로 횡보강된 철근콘크리트 기둥의 역학적 특성에 관한 연구)

  • 권영웅;정성철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.743-749
    • /
    • 1999
  • Recently new rehabilitation techniques have been proposed with advanced composite materials like carbon fiber, aramid, glass fiber sheet and so forth. The purpose of this paper is to investigate the mechanical characteristics of reinforced concrete columns confined with carbon fiber sheet and evaluate the degree of their strengthening effect. For the test, the specimen size of column is 15cm$\times$15cm$\times$90cm reinforced with 4 number of main bars of 10 mm diameter, tied bars of 6 mm diameter and slenderness ratio 20. Columns were wrapped with carbon fiber sheet along the column length. It is necessary to make some assumption regarding the confinement of carbon fiber sheet to apply to reinforced concrete columns under concentric loads. The strength gain effect of columns confined with carbon fiber sheet could be predicted using the proposed equation.

  • PDF

Design Equation for Punching Shear Capacity of SFRC Slabs

  • Higashiyama, Hiroshi;Ota, Akari;Mizukoshi, Mutsumi
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2011
  • In this paper, a design equation for the punching shear capacity of steel fiber reinforced concrete (SFRC) slabs is proposed based on the Japan Society of Civil Engineers (JSCE) standard specifications. Addition of steel fibers into concrete improves mechanical behavior, ductility, and fatigue strength of concrete. Previous studies have demonstrated the effectiveness of fiber reinforcement in improving the shear behavior of reinforced concrete slabs. In this study, twelve SFRC slabs using hooked-ends type steel fibers are tested with varying fiber dosage, slab thickness, steel reinforcement ratio, and compressive strength. Furthermore, test data conducted by earlier researchers are involved to verify the proposed design equation. The proposed design equation addresses the fiber pull-out strength and the critical shear perimeter changed by the fiber factor. Consequently, it is confirmed that the proposed design equation can predict the punching shear capacity of SFRC slabs with an applicable accuracy.