• Title/Summary/Keyword: panicle initiation stage

Search Result 86, Processing Time 0.032 seconds

Variation of Panicle Differentiation Stage by Leaf Growth According to Rice Cultivars and Transplanting Time (품종과 이앙시기별 엽 생장속도에 의한 벼의 유수분화시기 변화)

  • Ku, Bon-Il;Kang, Shin-Ku;Sang, Wan-Gyu;Choi, Min-Kyu;Lee, Kyu-Jone;Park, Hong-Kyu;Kim, Young-Doo;Kim, Bo-Kyong;Lee, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.353-361
    • /
    • 2013
  • The time of panicle initiation change by transplanting date, and this change is affected by heading ecotype and seedling age. So we assessed the variations of panicle initiation, spikelet differentiation and heading date affected by transplanting dates, rice cultivars and seedling ages. And we compared the growth durations and meterological factors between chief growth stages. The differences of growth duration from transplanting date to spikelet differentiation by seedling age were 1~3 days in all transplanting of Unkwang, but it increased to 4 days in Hwayeong transplanting on May 1 and June 30, and Nampyeong transplanting on June 30. The growth durations from panicle initiation to heading of Unkwang and Hwayeong increased until transplanting time by May 31, and decreased thereafter. The growth durations of Nampyeong increased in transplanting on May 16 and May 31. In each transplanting, mean temperature of 30 days after heading was highest in early transplanting, but sunshine hours in the period were highest in transplanting on June 30 in Unkwang, in transplanting on June 15 in Hwayeong, and higher in transplanting on May 31 and June 15 in Nampyeong. The growth duration between spikelet differentiation and heading showed variation according to rice cultivars and transplanting date, Those were 22~26 days in Unkwang, 21~27 days in Hwayeong and 21~28 days in Nampyeong.

SPATIAL YIELD VARIABILITY AND SITE-SPECIFIC NITROGEN PRESCRIPTION FOR THE IMPROVED YIELD AND GRAIN QUALITY OF RICE

  • Lee Byun-Woo;Nguyen Tuan Ahn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2005.08a
    • /
    • pp.57-74
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, the two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if prescribed N for site-specific fertilizer management at panicle initiation stage (VRT) could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, ,33 kg N/ha at PIS) method. The trial field was subdivided into two parts and each part was subjected to UN and VRT treatment. Each part was schematically divided in $10\times10m$ grids for growth and yield measurement or VRT treatment. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for this calculation were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with average of 57kg/ha that was higher than 33kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%\;and\;7.1\%$ in VRT from $14.6\%\;and\;13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. Although N use efficiency of VRT compared to UN was not quantified due to lack of no N control treatment, the procedure used in this paper for VRT estimation was believed to be reliable and promising method for managing within-field spatial variability of yield and protein content. The method should be received further study before it could be practically used for site-specific crop management in large-scale rice field.

  • PDF

Characteristics of Rice and Paddy Soil under No-Till Direct-Sown Rice-Wheat Cropping System

  • Cho, Young-Son;Choe, Zhin-Ryong;Lee, Byeong-Zhin
    • Korean Journal of Organic Agriculture
    • /
    • v.7 no.2
    • /
    • pp.153-161
    • /
    • 1999
  • No-till direct-sown rice-wheat relaying cropping system has major advantages such as labor and cost saving by eliminating tillage and preparation of seed bed and transplanting. In this system, rice sowing was done simultaneously wheat harvesting. A paddy field experiment was conducted to evaluate effects of no-till years on soil microbial changes and soil physico-chemical characteristics with rice growth and development. Chemical fertilizers and agricultrual chemicals was not applied in no-till system. As the year in no-till direct-sown system the air permeability was increased and after water submerging soluble nitrogen was released Aerobic microbial-n was highest in May and then decreased after water irrigation. The population of aerobic soil microorganisms were steeply decreased after water submerging Soil microorganisms was decreased with the increased the soil depth. A month was needed for the seedling establishment in a no-tillage rice-wheat cropping system. Increased cropping years improved leaf greenness and leaf area index(LAI). But stomatal conductance(Gc) was higher in conventional cultivation system than no-till system. Stomatal conductance at panicle initiation stage was increased higher in conventional condition of leaves but the difference between conventional and no-till system was increased at heading stage. In no-till 4 years condition rice grain yield was spikelet numbers per panicle.

  • PDF

Using Chlorophyll(SPAD) Meter Reading and Shoot Fresh Weight for Recommending Nitrogen Topdressing Rate at Panicle Initiation Stage of Rice

  • Nguyen, Hung The;Nguyen, Lan The;Yan, Yong-Feng;Lee, Kyu-Jong;Lee, Byun-Woo
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • Nitrogen management at the panicle initiation stage(PI) should be fine-tuned for securing a concurrent high yield and high quality rice production. For calibration and testing of the recommendation models of N topdressing rates at PI for target grain yield and protein content of rice, three split-split-plot design experiments including five rice cultivars and various N rates were conducted at the experimental farm of Seoul National University, Korea from 2003 to 2005. Data from the first two years of experiments were used to calibrate models to predict grain yield and milled-rice protein content using shoot fresh weight(FW), chlorophyll meter value(SPAD), and the N topdressing rate(Npi) at PI by stepwise multiple regression. The calibrated models explained 85 and 87% of the variation in grain yield and protein content, respectively. The calibrated models were used to recommend Npi for the target protein content of 6.8%, with FW and SPAD measured for each plot in 2005. The recommended N rate treatment was characterized by an average protein content of 6.74%(similar to the target protein content), reduced the coefficient of variation in protein content to 2.5%(compared to 4.6% of the fixed rate treatment), and increased grain yield. In the recommended N rate treatments for the target protein content of 6.8%, grain yield was highly dependent on FW and SPAD at PI. In conclusion, the models for N topdressing rate recommendation at PI were successful under present experimental conditions. However, additional testing under more variable environmental conditions should be performed before universal application of such models.

  • PDF

Response of Grain Protein Content to Nitrogen Topdress Rate at Panicle Initiation Stage under Different Growth and Plant Nitrogen Status of Rice (벼 유수분화기 생육 및 질소영양 상태에 따른 쌀 단백질함량의 수비 질소 반응)

  • Kim, Min-Ho;Lee, Kyu-Jong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.104-111
    • /
    • 2007
  • As protein content of milled rice, generally used as a benchmark for rice eating quality, is greatly affected by N fertilization and nutrition status of rice plant, understanding its response to nitrogen rate and plant nitrogen status at different growth stage is important for recommending N fertilizer management for high quality rice production. The responses of milled-rice protein content were compared and quantified under various combinations of basal+tillering and panicle N application levels in 2001 and 2002. Protein content of milled rice was ranged from 6 to 9%, increasing significantly with increasing basal+tillering and panicle N rates. However, milled rice protein content was raised much greater by panicle N than by basal+tillering N fertilization. Even though basal+tillering N increased up to 20 kg/ha, protein content of milled rice was observed less than 7% in case that panicle N was applied below 1.8 kg/10a. Regression analysis revealed that nitrogen accumulated until harvest was partitioned with almost constant rates of 58.3% and 46.5% to panicle and milled rice, respectively. The partitioning rates was slightly but not significantly different between experimental years. Protein content of milled rice showed linear and quadratic responses to the shoot N accumulation until panicle initiation stage (PIS) ant shoot nitrogen accumulation from PIS to harvest, respectively. The increment of milled-rice protein content per unit N increase was much greater in shoot N accumulation from PIS to harvest than in that until PIS. Regardless of shoot N accumulation until PIS upto 8 kg/10a, protein content of milled rice was lower than 7% and ranged from 6.5 to 7.5% in case that shoot N accumulation from PIS to harvest was below 3.0 kg/10a and below 6.0 kg/10a respectively. It would be concluded that even under the same N accumulation until harvest milled rice protein content could be different according to the N fertilizer management and weather condition especially during ripening, providing rooms for controlling protein content by N fertilizer management without damage to grain yield.

Differences in Panicle Structure and Spikelet Degeneration in Two Different Types of Rice Cultivars; Milyang 23 and Koshihikari (벼 품종 밀양 23호와 고시히카리의 수형태와 영화 퇴화 차이)

  • 강시용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.833-840
    • /
    • 1997
  • Differentiation and degeneration of spikelets in paddy rice has been studied in high yielding Indica$\times$Japonica hybrid cultivar, Milyang 23 and a Japonica type cultivar, Koshihikari. Germinated seeds planted in 5000$^{-1}$ a pots filled with submerged soil and cultured under natural conditions. The young panicles of main stem were continuously dissected and observered by Cryo-SEM from the panicle initiation stage, and investigated about formation position of the differentiation and degeneration spikelet within a panicle of 7 days after heading. The degeneration of spikelet appeared simultaneously throughout panicle just after closure of spikelet by the palea and lemma. Differentiated and degenerated spikelets per panicle were about 240, 80 for Milyang 23 and 87, 6 for Koshihikari, respectively. The spikelets degeneration in Milyang 23 was mainly on the secondary and tertiary branch which were developed from primary branch of middle-basal panicle node and hardly not the spikelets of primary branch, and degeneration rate of secondary and tertiary rachis branch and spikelets for Milyang 23 were 2.5 times greater than those of Koshihikari. The proper relation equation between total differentiation or normal spikelets number per panicle(Y) and each rachis branch number were different between cultivars, Le., Y=5.5X$_1$+3.0X$_2$ for Koshihikari as previously proposed, but those of Milyang 23, Y=5.7X$_1$+3.5X$_2$+2.8X$_3$ for total differentiation spikelets and Y=5.6X$_1$+3.2X$_2$+2.4X$_3$ for normally developed spikelets, where X$_1$, X$_2$, X$_3$ are number of primary, secondary, tertiary rachis branch, respectively.

  • PDF

Study of Nutrient Uptake and Physiological Characteristics of Rice by $^{15}N$ and Purified Si Fertilization Level in a Transplanted Pot Experiment (중질소와 순수규산 시비수준이 벼의 양분흡수 및 생리적 특성에 미치는 영향)

  • Cho Young-Son;Jeon Won-Tae;Park Chang-Young;Park Ki-Do;Kang Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.408-419
    • /
    • 2006
  • A pot experiment was conducted for two years to evaluate the effects of purified Si fertilization combined with $^{15}N$ on the nutrient uptake, plant growth characteristics, and photosynthetic characteristics of rice in water melon cultivated soil. In 2002, plant height was positively affected at 25 DAT (Day After Transplanting) by Si fertilization in 100%N treatment. However, in 2003, plant height at 25 DAT was negatively affected by Si fertilization in low N level but it was reversed in high N level with initial increase of plant height. Tiller number per pot was positively affected by N and Si fertilization level, especially for high N fertilized treatment. Leaf color was positively affected by Si fertilizatlon in no N fertilized pots, however, Si was not effected in 50%N and 100%N fertilized treatments. N harvest index (NHI) increased with increased Si fertilization in no N plots, however it decreased with increasing of N fertilization level. Nitrogen use efficiency (NUE) decreased with increasing of fertilized N but Si fertilization increased NUE in 50%N plots, however, it was not different by the Si fertilization level in 100%N plots. In 50%N+200%Si plots, NUE was greatest with 130 and shoot N content was $16.2g-N/m^{2}$. N content ($g/m^{2}$) in rice plant increased with increasing Si fertilization in no N plots at panicle initiation stage, 50 and 100%N plots at heading stage and all N treatment at harvesting time. This was mostly more efficient in late growth stage than early growth stage. The concentration (%) of P and K increased with increasing N fertilization level at heading and harvesting but it was not significantly different by the Si fertilization treatment except a little decreasing with increasing Si fertilization level at heading. Potassium content was also not significantly related with N fertilization level except increasing with Si fertilization level at panicle initiation stage. Plant Ca content (%) decreased with increasing of Si fertilization at heading stage and Si fertilization increased Ca content at panicle initiation stage and heading stage and it increased with increasing of Si fertilization level. Photosynthetic activity was not directly related with Si fertilization amount, however, Fluorescent factors, Fv'/Fm' and PsII, were positively affected by Si fertilization level. In conclusion, N fertilization in Si 200% fertilized condition should be reduced by about 50% level of recommended N fertilization for rice cropping in green-house water-melon cultivated paddy field. However, improvement of Ps by Si fertilization could not be attributed to Ps activity in the same leaf area but because of increased total leaf area per pot improved fluorescent characteristics.

Response of Rice Growth under $CO_2$ Enrichment ($CO_2$ 농도 증가에 따른 벼의 생육 반응)

  • Kim Young-Guk;Shin Jin-Chul;Choi Min-Gyu;Koo Bon-Cheul;Kim Seok-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.3
    • /
    • pp.179-185
    • /
    • 2005
  • The effects of $CO_2$ enrichment on growth of rice (Oryza sativa L.) were examined. The plants were grown in growth chambers with a 12-h photoperiod and a day/night temperature of $28/21^{\circ}C$ of the seedling stage and $30/23^{\circ}C$ after the panicle initiation stage. The plants were exposed to two elevated $CO_2$ of 500, 700 ppm and ambient levels (350 ppm). At early growth stage of three varieties (IIpumbyeo, Chucheongbyeo, Hwaseongbyeo), the elevated $CO_2$ increased plant height, tiller, leaf area and dry weight. The photosynthetic rate was decreased at 24 days after treatment (DAT) compared to 11 DAT. The elevated $CO_2$ increased plant height and dry weight at panicle initiation stage (PIS) and heading stage (HS) of three varieties (IIpumbyeo, Chucheongbyeo, Hwaseongbyeo). The photosynthetic rate, stomatal conductance, evapotranspiration rate were decreased at the long days of treatment than that of short days. At entire stages, the elevated $CO_2$ increased the water use efficiency of rice plant because evapotranspiration rate was lowered at the elevated $CO_2$ than ambient levels.

Salt Injury and Overcoming Strategy of Rice (수도의 염해와 대책)

  • 이승택
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.66-80
    • /
    • 1989
  • Salt injury in rice is caused mainly by the salinity in soil and in the irrigated water, and occasionaly by salinity delivered through typhoon from the sea. The salt concentration of rice plants increased with higher salinity in the soil of the rice growing. The climatic conditions, high temperature and solar radiation and dry conditions promote the salt absorption of rice plant in saline soil. The higher salt accumulation in the rice plant generally reduces the root activity and inhibits the absorption of minerals of rice plant, resulting the reduction of photosynthesis. The salt damages of rice plant, however, are different from different growth stage of rice plants as follows: 1. Germination of rice seed was slightly delayed up to 1.0% of salt concentration and remarkably at 1. 5%, but none of rice seeds were germinated at 2.5%. This may be due to the delayed water uptake of rice seeds and the inhibition of enzyme activity, 2. It was enable to establish rice seedlings at seed bed by 0.2% of salt concentration with some reduction of leaf elongation. The increasing of 0.3% salt concentration caused to the seedling death with varietal differences, but most of seedlings were death at 0.4% with no varietal differences. 3. Seedlings grown at the nursery over 0.1% salt, gradually reduced in rooting activity after transplanting according to increasing the salt concentration from 0.1% up to 0.3% of paddy field. However, the seedlings grown in normal seed bed showed no difference in rooting between varieties up to 0.1% but significantly different at 0.3% between varieties, but greatly reduced at 0.5% and died at last in paddy after transplanting. 4. At panicle initiation stage, rice plant delayed in heading by salt damage, at meiotic stage reduced in grains and its filling rate due to inhibition of glume and pollen developing, and salt damage at heading stage and till 3 weeks after heading caused to reduction of fertilization and ripening rate. In viewpoint of agricultural policy the overcoming strategy for salt injury is to secure sufficient water source. Irrigation and drainage systems as well as underground drainage is necessary to desalinize more effectively. This must be the most effective and positive way except cost. By cultural practice, growing the salt tolerant variety with high population could increase yield. The intermittent irrigation and fresh water flooding especially at transplanting and from panicle initiation to heading stage, the most sensitive to salt injury, is important to reduce the salt content in saline soil. During the off-cropping season, plough and rotavation with flooding followed by drainage, or submersion and drainage with groove could improve the desalinization. Increase of nitrogen fertilizer with more split application, and soil improvement by lime, organic matter and forign soil addition, could increase the rice yield. Shift of trans-planting is one of the way to escape from the salt injury.

  • PDF

Varietal Differences and Time Course Changes in Greenness Values in Rice Leaf (벼 엽록도값의 품종간 차이와 생육기간중 경시적 변화)

  • 홍광표;김영광;정완규;손길만;송근우;최용조;최진용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.479-483
    • /
    • 2003
  • Knowledge of N accumulation during the vegetative growth stage of rice (Oryza sativa L.) is useful for determining the need for topdressing fertilizer N at panicle initiation and booting stage. The chlorophyll content showing SPAD threshold values generated by a simple and portable diagnostic instrument, chlorophyll meter, enables implement the measures of greenness and/or relative chlorophyll contents of leaves. Two-year field experiment was conducted to evaluate the possible application of the chlorophyll meter for N diagnosis in transplanted paddy rice. The chlorophyll meter threshold values (SPAD reading) were taken from uppermost fully expanded leaves at 10days interval from 10 days after transplanting. SPAD readings and N contents of rice leaf blade were closely related at the maximum tillering stage. SPAD readings during growth period showed M-shaped distribution, sharply finished to drop at 20 days after heading date. As N fertilizer increased, the SPAD readings increased. The SPAD readings showed more critical and clear difference in immature paddy field than in ordinary paddy field, where the former soil showed higher response to N fertilizer topdressed. Based on the PAD readings for obtaining an optimum sink size bearing the maximum grain yield, N fertilizer to be dressed at the panicle initiation stage is to be adjusted within the SPA$\times$tillers value range 888 in ordinary paddy, and 800 in immature paddy vice. Among the cultivars tested, Huckhyangbyeo, Jinpumbyeo, Ansungbyeo, Sobibyeo, Manpungbyeo, Sangmibyeo, Jinbongbyeo, showed high SPAD values, whereas the cultivars, Nonghobyeo, Saechuchungbyeo, Hwabongbyeo, Mananbyeo, did low values and others intermediate SPAD threshhold values.