• Title/Summary/Keyword: panel thickness

Search Result 555, Processing Time 0.022 seconds

Influence of Thickness of Optical Panel on the Growth Rate of Chlorella vulgaris in Photobioreactor (광생물반응기에서 도광판의 두께가 Chlorella vulgaris 증식에 미치는 영향)

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.270-275
    • /
    • 2013
  • The aim of this study was to investigate the efficiency of thickness of optical panel (OP) on the growth rate of Chlorella vulgaris. The size of Chlorella vulgaris (FC-16) was $3-8{\mu}m$, having round in shape. The cells of Chlorella vulgaris was cultured in the Jaworski's Medium with deionized water at $22^{\circ}C$ for 15 days. For this experiment, three OP samples were prepared to evaluate the efficiency of thickness of OP on the growth rate of Chlorella vulgaris; 4 mm OP with LED (Light Emitting Diode) (Run 1), 6 mm OP with LED (Run 2) and 8 mm with LED (Run 3). The diffuse rate was reached 86%, 91% and 92% for Run 1, Run 2 and Run 3, respectively. Average biomass of Run 2 and Run 3 were measured 11.18% higher than that of Run 1. However, the specific growth rate for all fractions were almost same. In addition, chlorophyll content per cell and cell volume were found to be slice difference between Run 2 and Run 3. Therefore, Run 2 has more effect on growth rate of biomass for Chlorella vulgaris than Run 1 and Run 3.

Comparison of Sound Transmission Loss Through Single and Double with Vacuum Layer Polymer Soundproof Panel (단일 구조 및 진공층이 있는 이중 구조 폴리머 방음패널의 음향투과손실 비교)

  • Lee, Ju Haeng;Kim, Ilho;Ahn, Kwang ho
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.11-15
    • /
    • 2013
  • PURPOSES : This study is to compare sound transmission loss(STL) value depending on the four kinds of materials, PC(Polycarbonate), PMMA(Polymethyl mathacrylate), PE(Polyethlyene), PP(Polypropylene), and two types of structure, single layer and double with vacuum layer, of soundproof panel. METHODS : With four sorts of polymer material, the specimens were made as various structures, 4 mm and 8 mm of single soundpoof panel and vacuum layered 4 mm of one. The experimental condition and procedures were complied with authorized process test, KS F 2808. RESULTS : STL of single panel made of PC were the greatest followed by PMMA, PE, PP regardless of the thickness of panel, However, STL of PMMA panel began to decrease around 2500 Hz and reached the lowest value among others in 5000 Hz. Vacuum layer soundproof panel showed good performance in more than 2000 Hz. Only vacuum layer panel made of PC presented resonance frequency at 800 Hz while that of other vacuum ones at 1000 Hz. CONCLUSIONS : According to results of single layer, it was found that single panel functioned as the theorical way we expected in terms of surface density. That trends were blurred as the panel got thicker. And it was suggested also that vacuum layer panel performed well at high frequency, more than 2000 Hz.

A Study on the Compressive Characteristics of Inner Structure Bonded Sheet in the Thickness Direction (접합판재의 두께 방향 압축 특성에 대한 실험 및 연구해석)

  • Cho, K.C.;Kim, J.Y.;Chung, W.J.;Kim, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.300-303
    • /
    • 2006
  • Sandwich panel with inner structure is expected to find many applications because of high stiffness to mass ratio. However, low resistance to the pressure in the thickness direction may become a weak point in the forming process. Two pyramid type designs for inner structure are considered. For the resistance characteristics in the thickness direction, finite element simulations are carried out. For one design, experimental results are provided. It is shown that simulation can give a reasonable agreement with experiment. The reasons for the discrepancy are discussed mainly in the geometrical viewpoint. It is observed that most of deformation depends on bending mode. Two designs are compared using simulation.

  • PDF

Fatigue Properties of Glass Fiber Reinforced Polymer Composite Panels (유리섬유보강 폴리머 복합패널의 피로특성)

  • Yeon, Kyu-Seok;Kim, Soo-Bo;Ryu, Neung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.29-36
    • /
    • 2004
  • In this study, The fatigue properties of the GFRP composite panels of which core was made of the polymer mortar and both facings were reinforced by the high-tensile GFRP were surveyed. Composite-panel specimens consisted of polymer mortar core and GFRP compressive and tensile sides with various thickness were produced for an experimental study. Flexural fatigue tests were conducted to examine the correlation between the fatigue load and the fatigue life for various thickness of core and facings, and its results are presented. The correlation obtained in this study between the fatigue load and the fatigue life for various thickness arc in good agreement with the modified Miner's law.

Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects

  • Katariya, Pankaj V.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.657-668
    • /
    • 2019
  • The numerical thermal frequency responses of the skew sandwich shell panels structure are investigated via a higher-order polynomial shear deformation theory including the thickness stretching effect. A customized MATLAB code is developed using the current mathematical model for the computational purpose. The finite element solution accuracy and consistency have been checked via solving different kinds of numerical benchmark examples taken from the literature. After confirming the standardization of the model, it is further extended to show the effect of different important geometrical parameters such as span-to-thickness ratios, aspect ratios, curvature ratios, core-to-face thickness ratios, skew angles, and support conditions on the frequencies of the sandwich composite flat/curved panel structure under elevated temperature environment.

Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel

  • Lal, Achchhe;Saidane, Nitesh;Singh, B.N.
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.505-534
    • /
    • 2012
  • The present work deals with second order statistics of post buckling response of piezoelectric laminated composite cylindrical shell panel subjected to hygro-thermo-electro-mechanical loading with random system properties. System parameters such as the material properties, thermal expansion coefficients and lamina plate thickness are assumed to be independent of the temperature and electric field and modeled as random variables. The piezoelectric material is used in the forms of layers surface bonded on the layers of laminated composite shell panel. The mathematical formulation is based on higher order shear deformation shell theory (HSDT) with von-Karman nonlinear kinematics. A efficient $C^0$ nonlinear finite element method based on direct iterative procedure in conjunction with a first order perturbation approach (FOPT) is developed for the implementation of the proposed problems in random environment and is employed to evaluate the second order statistics (mean and variance) of the post buckling load of piezoelectric laminated cylindrical shell panel. Typical numerical results are presented to examine the effect of various environmental conditions, amplitude ratios, electrical voltages, panel side to thickness ratios, aspect ratios, boundary conditions, curvature to side ratios, lamination schemes and types of loadings with random system properties. It is observed that the piezoelectric effect has a significant influence on the stochastic post buckling response of composite shell panel under various loading conditions and some new results are presented to demonstrate the applications of present work. The results obtained using the present solution approach is validated with those results available in the literature and also with independent Monte Carlo Simulation (MCS).

Effect of Panel Density and Resin Content on Properties of Medium Density Fiberboard

  • Hong, Min-Kug;Lubis, Muhammad Adly Rahandi;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.444-455
    • /
    • 2017
  • This study was conducted to evaluate the effect of panel density and resin content on properties of medium density fiberboard (MDF) to obtain some insights on MDF properties as a function of panel density and resin content. MDF panels with different panel densities such as 650, 700, 750 and $800kg/m^3$ were manufactured by adjusting the amount of wood fibers in the mat forming. MDF panels were also fabricated by spraying 8, 10, 12, and 14% of urea-formaldehyde (UF) resins onto wood fibers in a drum-type mechanical blender to fabricate MDF panels with a target density of $650kg/m^3$. As the panel density and resin content increased, the internal bonding (IB) strength of MDF panel consistently increased. Modulus of rupture (MOR), modulus of elasticity (MOE) and screw withdrawal resistance (SWR) had a similar trend to the IB strength. In physical properties, thickness swelling (TS) and water absorption (WA) decreased with an increase in both panel density and resin content. In addition, the formaldehyde emission (FE) which increased as the panel density and resin content became greater. In overall, the panel density of MDF had more significant effect than the resin content in all properties of MDF panels, indicating that it was better to adjust the panel density rather than the resin content for MDF manufacture.

Color Simulation to Demonstrate the Effects of the Filter Layer with $CoAl_2O_4$ on Inner Face of CRT Panel

  • Kim, Sang-Mun
    • Journal of Information Display
    • /
    • v.6 no.3
    • /
    • pp.26-29
    • /
    • 2005
  • Nanosize cobalt aluminate($CoAl_2O_4$) power was coated as filter layer for us to improve the color purity and contrast performances on the inner face of CRT panel. We simulated color properties by measuring the transmittance and thickness of the coated filter layer. Contrast performance could be improved and color gamut was also changed by the selective light absorption of filter layer at 580${\sim}$605 nm.

Seperate Driving System For Large Area X-ray Detector In Radiology (대면적 X-ray 검출기를 위한 분할 구동 시스템)

  • Lee, D.G.;Park, J.K.;Kim, D.H.;Nam, S.H.;Ahn, S.H.;Park, H.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.388-391
    • /
    • 2003
  • The properties of these detectors can be controlled by electronics and exposure conditions. Flat-panel detectors for digital diagnostic imaging convert incident x-ray images to charge images. Flat panel detectors gain more interest real time medical x-ray imaging. Active area of flat panel detector is $14{\times}17$ inch. Detector is based on a $2560{\times}3072$ away of photoconductor and TFT pixels. X-ray conversion layer is deposited upper TFT array flat panel with a 500m by thermal deposition technology. Thickness uniformity of this layer is made of thickness control technology(5%) of thermal deposition system. Each $139m{\times}139m$ pixel is made of thin film transistor technology, a storage capacitor and charge collection electrode having geometrical fill factor of 86%. Using the separate driving system of two dimensional mosaic modules for large area, that is able to 4.2 second per frame. Imaging performance is suited for digital radiography imaging substitute by conventional radiography film system..

  • PDF

A Study on the Thermal Insulation Performance of Vacuum Insulation Panel Using Dry Processing Glass Fiber Core (건식 유리섬유 심재를 사용한 진공단열재의 단열특성에 관한 연구)

  • Yoo, Chae-Jung;Kim, Min-Cheol;Go, Seong-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.121-128
    • /
    • 2019
  • There is a big move to build zero-energy buildings in the form of passive houses that reduce energy waste worldwide. Korea has set a goal of reducing its greenhouse gas emissions by 37% by 2030 through the activation of green buildings, such as strengthening the energy levels of new buildings and improving the energy efficiency of existing buildings. The use of insulation with high insulation performance is one of the key technologies to realize this, and vacuum insulation is the next generation insulation that blocks the energy flow of the building. In this study, we measured the bonding structure of dry and wet processing glass fiber core materials and compared the insulation performance of vacuum insulation panel. In addition, the insulation performance of vacuum insulation panel was measured according to the thickness of the laminated core. It can be confirmed that the lamination structure of the core and the lamination thickness are important factors for the heat insulating performance of the vacuum insulating panel.