• 제목/요약/키워드: pancreatic beta cell

검색결과 138건 처리시간 0.029초

조절 T 세포 유래 TGF-β1에 의한 췌장섬세포의 기능 및 활성 증가 (Regulatory T Cells Promote Pancreatic Islet Function and Viability via TGF-β1 in vitro and in vivo)

  • 최봉금;김사현
    • 대한임상검사과학회지
    • /
    • 제50권3호
    • /
    • pp.304-312
    • /
    • 2018
  • 본 연구에서는 면역 억제 역할을 하는 것으로 알려져 있는 조절 T 세포 (regulatory T cell, Treg)의 새로운 생리학적 기능 대하여 확인해보고자 하였다. 시험관내나 동물실험에서 조절 T 세포가 분비하는 transforming growth factor ${\beta}1$ ($TGF-{\beta}1$)에 의하여 이식 직전까지 췌장섬세포의 생존률을 향상시키면서 동시에 혈당조절 기능이 향상될 수 있을 것이라는 가설이다. 이를 증명하기 위하여 마우스를 이용한 1형 당뇨병 모델을 제작한 뒤, 180 IEQ (islet equivalents)의 췌장섬세포를 동종간 이식하였다. 췌장섬세포는 이식 수술 시행 전까지 48시간 동안 $4{\times}10^6$의 Treg 세포와 함께 배양하여 Treg 유래 $TGF-{\beta}1$에 충분히 노출시킨 뒤 사용하였다. Treg 단독군, 췌장섬세포 단독군 및 Treg/islet 동시 배양군에서 각각 $TGF-{\beta}1$, IL-6 및 인슐린 분비 수준의 변화를 측정하였다. Treg/islet 동시 배양군에서 IL-6와 인슐린 분비는 증가하였고 (P<0.0005, P<0.005), 췌장섬세포 단독군과 비교하여 생존율이 향상되었다(P<0.005). 또한, 이식 후, 동시 배양된 췌장섬세포는 1형 당뇨병 마우스 모델에서 혈당 수치를 보다 효율적으로 조절하였다. 이러한 결과는 Treg 세포가 $TGF-{\beta}1$ 분비를 통하여 췌장섬세포의 기능과 생존력을 향상시킬 수 있음을 시사한다.

Anti-Apoptotic Effect of Rheum undulatum Water Extract in Pancreatic ${\beta}-cell$ Line, HIT-T15

  • Yoon, Seo-Hyun;Hong, Mee-Sook;Chung, Joo-Ho;Chung, Sung-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권1호
    • /
    • pp.51-55
    • /
    • 2004
  • Sopungsungi-won has been used as a traditional medicine for diabetes and it has been proved to be a potential remedy for type 2 diabetes mellitus. We previously reported that water extract of Sopungsungi-won exhibits anti-diabetic effects both in vivo and in vitro experiments. In the present study, we have chosen to examined anti-apoptotic effect of Rheum undulatum, which is the main component of Sopungsungi-won, on pancreatic ${\beta}-cells$, HIT-T15, against hydrogen peroxide $(H_2O_2)$. oxidative stress. To investigate the anti-apoptotic effect of Rheum undulatum water extract (RUWE) against $H_2O_2-induced$ apoptosis in pancreatic ${\beta}-cell$ line of hamster, HIT-T15, MTT assay, DAPI staining, TUNEL assay, RT-PCR and caspase-3 enzyme assay were performed. The morphological analysis demonstrated that cells treated with $H_2O_2$ exhibited classical apoptotic features, while such changes was reduced in cells pre-treated with RUWE. In addition, RUWE pre-treated cells prior to $H_2O_2$ treatment induced increase of levels of bcl-2 expression and decrease of caspase-3 enzyme activity compared to cells treated with $H_2O_2$ only. These results provide the possibility of usage of RU in patients with progressively deteriorated diabetes.

Radicicol Inhibits iNOS Expression in Cytokine-Stimulated Pancreatic Beta Cells

  • Youn, Cha Kyung;Park, Seon Joo;Li, Mei Hong;Lee, Min Young;Lee, Kun Yeong;Cha, Man Jin;Kim, Ok Hyeun;You, Ho Jin;Chang, In Youp;Yoon, Sang Pil;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.315-320
    • /
    • 2013
  • Here, we show that radicicol, a fungal antibiotic, resulted in marked inhibition of inducible nitric oxide synthase (iNOS) transcription by the pancreatic beta cell line MIN6N8a in response to cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$). Treatment of MIN6N8a cells with radicicol inhibited CM-stimulated activation of NF-${\kappa}B$/Rel, which plays a critical role in iNOS transcription, in a dose-related manner. Nitrite production in the presence of PD98059, a specific inhibitor of the extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) pathway, was dramatically diminished, suggesting that the ERK1/2 pathway is involved in CM-induced iNOS expression. In contrast, SB203580, a specific inhibitor of p38, had no effect on nitrite generation. Collectively, this series of experiments indicates that radicicol inhibits iNOS gene expression by blocking ERK1/2 signaling. Due to the critical role that NO release plays in mediating destruction of pancreatic beta cells, the inhibitory effects of radicicol on iNOS expression suggest that radicicol may represent a useful anti-diabetic activity.

hPDX1 유전자의 삽입에 의한 직접 췌도세포 분화 (Transdifferentiation of α-1,3-Galactosyltransferase Knock Out (GalT KO) Pig Derived Bone Marrow Mesenchymal Stromal Cells (BM-MSCs) into Pancreatic Cells by Transfection of hPDX1)

  • 옥선아;오건봉;황성수;김영임;권대진;임기순
    • 한국수정란이식학회지
    • /
    • 제30권3호
    • /
    • pp.249-255
    • /
    • 2015
  • Diabetes mellitus, the most common metabolic disorder, is divided into two types: type 1 and type 2. The essential treatment of type 1 diabetes, caused by immune-mediated destruction of ${\beta}-cells$, is transplantation of the pancreas; however, this treatment is limited by issues such as the lack of donors for islet transplantation and immune rejection. As an alternative approach, stem cell therapy has been used as a new tool. The present study revealed that bone marrowderived mesenchymal stromal cells (BM-MSCs) could be transdifferentiated into pancreatic cells by the insertion of a key gene for embryonic development of the pancreas, the pancreatic and duodenal homeobox factor 1 (PDX1). To avoid immune rejection associated with xenotransplantation and to develop a new cell-based treatment, BM-MSCs from ${\alpha}$-1,3-galactosyltransferase knockout (GalT KO) pigs were used as the source of the cells. Transfection of the EGFP-hPDX1 gene into GalT KO pig-derived BM-MSCs was performed by electroporation. Cells were evaluated for hPDX1 expression by immunofluorescence and RT-PCR. Transdifferentiation into pancreatic cells was confirmed by morphological transformation, immunofluorescence, and endogenous pPDX1 gene expression. At 3~4 weeks after transduction, cell morphology changed from spindle-like shape to round shape, similar to that observed in cuboidal epithelium expressing EGFP. Results of RT-PCR confirmed the expression of both exogenous hPDX1 and endogenous pPDX1. Therefore, GalT KO pig-derived BM-MSCs transdifferentiated into pancreatic cells by transfection of hPDX1. The present results are indicative of the therapeutic potential of PDX1-expressing GalT KO pig-derived BM-MSCs in ${\beta}-cell$ replacement. This potential needs to be explored further by using in vivo studies to confirm these findings.

Neonatal Diabetes Mellitus Due to KCNJ11 (KIR6.2) Mutation Successfully Treated with Sulfonylurea

  • Jang, Sehun;Yang, Misun;Ahn, So Yoon;Sung, Se In;Chang, Yun Sil;Park, Won Soon
    • Neonatal Medicine
    • /
    • 제28권2호
    • /
    • pp.94-98
    • /
    • 2021
  • Neonatal diabetes mellitus (NDM) is a rare disease that occurs at less than 6 months of age and is presumably caused by a mutation in the gene that affects pancreatic beta-cell function. Approximately 80% of NDM cases reveal a known genetic mutation, and mutations in potassium inwardly rectifying channel subfamily J member 11 (KCNJ11) and ABCC8 affecting the pancreatic beta-cell adenosine triphosphate-sensitive potassium channel may be treated with oral sulfonylurea. Early recognition of mutations in KCNJ11 and ABCC8 is important because early administration of sulfonylurea can not only control blood glucose levels but also improve neurodevelopmental outcomes. In the present study, we report a case of NDM that initially presented as diabetic ketoacidosis at the age of 1 month, accompanied by seizures during hospitalization. After confirmation of the KCNJ11 gene mutation (c.989A>C), we started administering oral sulfonylurea (glimepiride) at the age of 2 months. After gradually increasing the dosage of glimepiride, insulin was discontinued at the age of 3 months. To date, the infant's blood glucose levels have been well controlled without significant hypoglycemic events. No further episodes of seizures have occurred, and his developmental status is favorable.

췌장베타세포에서 스트렙토초토신으로 유도한 당뇨병 실험 모델에 대한 팔미원의 영향 (Effect of Palmiwon on the Streptozotocin induced Prediabetic Model in Panceratic Bita Cells)

  • 이인순;이인자
    • Biomolecules & Therapeutics
    • /
    • 제6권4호
    • /
    • pp.371-377
    • /
    • 1998
  • The aim of the present study was to investigate the effect of Palmiwon on the type 1-prediabetic models induced by streptozotocin (STZ) in RINm5F cells and HIT-T15 cells. Palmiwon increased the cell proliferation and insulin release when pre- and post-treated for the STZ-exposed pancreatic beta cells. The cell proliferation and insulin release of these beta cells were measured by $^3$H-thymidine uptake and RIA, respectively. We also analyzed nutrients such as sugars, fatty acid and amino acids and minerals containing in Palmiwon using by gas chromatography, amino acid analyzer and AA spectrometer, respectively. Palmiwon seems to have protective and recovery properties on the prediabetic model in cellular level, which were ascribe to various nutrients and minerals containing in Palmiwon. From these results, it could be suggested that Palmiwon may be available as preventive and therapeutic prescription of type 1 diabetes mellitus.

  • PDF

Effect of White, Taegeuk, and Red Ginseng Root Extracts on Insulin-Stimulated Glucose Uptake in Muscle Cells and Proliferation of β-cells

  • Cha, Ji-Young;Park, Eun-Young;Kim, Ha-Jung;Park, Sang-Un;Nam, Ki-Yeul;Choi, Jae-Eul;Jun, Hee-Sook
    • Journal of Ginseng Research
    • /
    • 제34권3호
    • /
    • pp.192-197
    • /
    • 2010
  • Recent studies have indicated that $\beta$-cell dysfunction and insulin resistance are important factors in the development of type 2 diabetes. The present study investigated the effect of extracts from different parts of white, Taegeuk, and red ginseng root on insulin-stimulated glucose uptake in muscle cells and proliferation of $\beta$-cells. Extracts of the fine roots of Taegeuk ginseng significantly enhanced glucose uptake compared with the control. White ginseng lateral root extracts enhanced insulin-induced glucose uptake. Proliferation of $\beta$-cells was significantly increased by Taegeuk ginseng main and lateral root extracts and by red ginseng lateral and fine root extracts. In conclusion, different root parts of white, Taegeuk, and red ginseng differentially affect glucose uptake and pancreatic $\beta$-cell proliferation.

노팔천연복합물이 Streptozotocin으로 유발된 당뇨 쥐의 혈당 및 췌장조직에 미치는 영향 (Effects of Opuntia ficus-indica Complexes on Blood Glucose and Pancreatic Islets Histology in Streptozotocin-induced Diabetic Rats)

  • 윤진아;김제중;송병춘
    • 동아시아식생활학회지
    • /
    • 제22권3호
    • /
    • pp.334-340
    • /
    • 2012
  • 손바닥선인장의 한 종류인 노팔(Opuntia ficus-indica (L.) Mill)을 주재료로 하여 제조한 복합물(OF)의 항당뇨 효과를 알아보기 위해 8주령 수컷 SD-rat에게 streptozotoxin을 주사하여 당뇨를 유발하고, 사료에 OF를 첨가하여 3주간 급여하였으며, 1주일 간격으로 공복 시 혈당을, 3주 후에는 당내성과 혈장 인슐린 농도를 측정하고 췌장 조직에 면역조직화학 염색을 실시하였다. 실험동물은 정상 대조군(NC), 당뇨 대조군(DC), 2% OF 급여군(OF-2), 5% OF 급여군(OF-5)으로 구분되었으며, NC와 DC는 기초식이를, OF-2와 OF-5는 기초식이에 각각 2%와 5%의 OF를 섞어서 급여하였다. 실험 개시 후 1주마다 12시간 절식시켜 꼬리정맥에서 혈액을 채취하여 공복 혈당을 측정하였다. 실험 3주 후 12시간을 절식시켜 glucose(50 mg/kg BW)를 복강주사한 다음, 30, 60, 90, 120분 경과 후에 혈당을 측정하여 당내성을 측정하였고, 심장에서 혈액을 채취하여 혈중 인슐린 함량을 분석하였다. 또한 췌장 조직에 대해 면역조직화학 염색을 실시하여 조직학적인 변화를 알아보았다. 3주간의 공복 시 혈당은 OF-5와 OF-2 모두 유의적으로 감소하였다(p<0.05). 당내성 측정 결과, OF 급여군은 DC와는 달리 혈당 농도의 변화 추이가 NC와 유사하였으며, 특히 OF-5는 OF-2에 비해서도 혈당 강하 효과가 높았던 것으로 드러났다. 췌장 조직의 면역염색에 의하면, OF의 혈당강하 기작은 췌장 Langerhans' Islet의 ${\beta}$-세포를 생성시키고, ${\beta}$-세포의 사멸을 억제시켜 인슐린의 분비를 정상화시키는 것이었으며, 이러한 결과는 혈장 인슐린 함량의 증가로 재확인할 수 있었다. 결론적으로 OF는 I형 당뇨에서 현저한 혈당 강하 효과 및 Langerhans' Islet의 ${\beta}$-세포수를 회복시켜줌으로써 I형 당뇨의 치료에 효과가 있을 것으로 사료된다.

Protective Effects of Oleic Acid Against Palmitic Acid-Induced Apoptosis in Pancreatic AR42J Cells and Its Mechanisms

  • Ahn, Joung Hoon;Kim, Min Hye;Kwon, Hyung Joo;Choi, Soo Young;Kwon, Hyeok Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.43-50
    • /
    • 2013
  • Palmitic acid (PAM), one of the most common saturated fatty acid (SFA) in animals and plants, has been shown to induce apoptosis in exocrine pancreatic AR42J cells. In this study, we investigated cellular mechanisms underlying protective effects of oleic acid (OLA) against the lipotoxic actions of PAM in AR42J cells. Exposure of cells to long-chain SFA induced apoptotic cell death determined by MTT cell viability assay and Hoechst staining. Co-treatment of OLA with PAM markedly protected cells against PAM-induced apoptosis. OLA significantly attenuated the PAM-induced increase in the levels of pro-apoptotic Bak protein, cleaved forms of apoptotic proteins (caspase-3, PARP). On the contrary, OLA restored the decreased levels of anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-xL, and Mcl-1) in PAM-treated cells. OLA also induced up-regulation of the mRNA expression of Dgat2 and Cpt1 genes which are involved in triacylglycerol (TAG) synthesis and mitochondrial ${\beta}$-oxidation, respectively. Intracellular TAG accumulation was increased by OLA supplementation in accordance with enhanced expression of Dgat2 gene. These results indicate that restoration of anti-apoptotic/pro-apop-totic protein balance from apoptosis toward cell survival is involved in the cytoprotective effects of OLA against PAM-induced apoptosis in pancreatic AR42J cells. In addition, OLA-induced increase in TAG accumulation and up-regulation of Dgat2 and Cpt1 gene expressions may be possibly associated in part with the ability of OLA to protect cells from deleterious actions of PAM.

Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells

  • Chu, Chun;Gao, Xiang;Li, Xiang;Zhang, Xiaoying;Ma, Ruixin;Jia, Ying;Li, Dahong;Wang, Dongkai;Xu, Fanxing
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.163-171
    • /
    • 2020
  • Silibinin exhibits antidiabetic potential by preserving the mass and function of pancreatic β-cells through up-regulation of estrogen receptor-α (ERα) expression. However, the underlying protective mechanism of silibinin in pancreatic β-cells is still unclear. In the current study, we sought to determine whether ERα acts as the target of silibinin for the modulation of antioxidative response in pancreatic β-cells under high glucose and high fat conditions. Our in vivo study revealed that a 4-week oral administration of silibinin (100 mg/kg/day) decreased fasting blood glucose with a concurrent increase in levels of serum insulin in high-fat diet/streptozotocin-induced type 2 diabetic rats. Moreover, expression of ERα, NF-E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in pancreatic β-cells in pancreatic islets was increased by silibinin treatment. Accordingly, silibinin (10 μM) elevated viability, insulin biosynthesis, and insulin secretion of high glucose/palmitate-treated INS-1 cells accompanied by increased expression of ERα, Nrf2, and HO-1 as well as decreased reactive oxygen species production in vitro. Treatment using an ERα antagonist (MPP) in INS-1 cells or silencing ERα expression in INS-1 and NIT-1 cells with siRNA abolished the protective effects of silibinin. Our study suggests that silibinin activates the Nrf2-antioxidative pathways in pancreatic β-cells through regulation of ERα expression.