• Title/Summary/Keyword: pan 증발량

Search Result 64, Processing Time 0.023 seconds

Analysis of the Spatial Distribution of Pan Evaporation Trends (Pan 증발량 추세분포 분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3B
    • /
    • pp.243-255
    • /
    • 2010
  • The spatial distribution of pan evaporation and pan evaporation trends have been studied. In this study, pan evaporation data from 1973 to 1990 for 56 climatological stations were analyzed. In addition to annual average daily pan evaporation, monthly average daily pan evaporation in April, July, October and January were analyzed, considering seasonal effect. The study results indicate that in case of annual average daily pan evaporation, 38 stations out of 56 stations show decreasing trend. In case of average daily pan evaporation in January, 33 stations show decreasing trend. In April, 38 stations show increasing trend. In July, 47 stations show decreasing trend. In October, 35 stations show increasing trend. Therefore, on the whole, pan evaporation tended to decrease in January, July, and annual basis. On the other hand, pan evaporation tended to increase in April and October. Furthermore, pan evaporation trend in each individual region shows also different trend even though the region is located nearby, indicating that there are geographical and topographical effects on pan evaporation trend. Pan evaporation data and climatic data from 1973 to 2006 for 11 climatological stations were used for trend analysis. Climatic variables such as temperature, relative humidity and wind speed show same or opposite trend direction compared with pan evaporation in annual or monthly basis. Annual and monthly solar radiation trends show the same direction compared with pan evaporation; however, annual and monthly precipitation trends show the opposite direction compared with pan evaporation.

Estimation of small pan evaporation using temperature data (기온자료를 이용한 소형증발접시 증발량 산정)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.37-53
    • /
    • 2017
  • Pan evaporation has been used as an indirect method for the estimation of reservoir evaporation. Therefore, in this study, pan evaporation estimation equations using only temperature data were suggested in the case that available meteorological data is limited. A formula for estimating the pan evaporation were suggested by comparing estimated pan evaporation with measured pan evaporation in 12 study areas in Korea. The suggested pan evaporation equations were verified in 44 study areas by comparing not only with temperature-based equations but also with equations using other meteorological data (temperature, wind speed, relative humidity, and sunshine duration). The study results indicate that the suggested equations in this study provide much better pan evaporation estimates, compared with other temperature-based equations. Overall, the suggested equations provide appropriate pan evaporation estimates in most of 56 study areas. Therefore, the suggested equations using only temperature data in this study are considered appropriate for the estimation of pan evaporation in Korea especially in the case that available meteorological data is limited. In the future, using the air temperature and pan evaporation data measured at the reservoir, further research is needed to examine the applicability of suggested equations for the estimation of reservoir evaporation.

An Analysis of Changes in Pan Evaporation and Climate Values Related to Actual Evaporation (증발량 관련 기후인자와 팬증발량의 변화 분석)

  • Jeong, Dae-Il;Kang, Jae-Won
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.117-129
    • /
    • 2009
  • Evaporation over the world is expected to increase owing to increase in temperature by global warming. However, pan evaporation around the world has decreased in the past few decades. This study, which has been conducted in 18 meteorological gauging stations in Korean peninsula, investigates the changes in pan evaporation and climate variables such as precipitation, temperature, relative humidity, wind speed, sunshine hours, and percentage of sunshine, which can affect evaporation processes; the changes in these variables have been recorded between 1960 and 2007. At most gauging stations, pan evaporation shows statistically significant downward trends. The relative humidity, wind speed, sunshine hours, and percentage of sunshine also show downward trends. On the other hand, precipitation and temperature show upward trends. The spatial distribution of the downward trend in sunshine hours and percentage of sunshine correspond to that of the downward trend in pan evaporation. Scatter plots imply that pan evaporation has a strong positive correlation with the sunshine hours and percentage of sunshine, while it has a negative correlation with precipitation. At the Gangneung gauging station, the open water evaporation estimated using the Penman equation does not show the significant downward trend shown by pan evaporation. This result implies that pan evaporation is not a good indicator of potential or open water evaporations during the investigation of their long-term variability. Finally, this study explains the complementary relationship between pan and actual evaporations. Decreases in the pan evaporation can act as an evidence for the ever-increasing actual evaporation.

Comparisons of the Pan and Penman Evaporation Trends in South Korea (우리나라 증발접시 증발량과 Penman 증발량 추세 비교분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.445-458
    • /
    • 2010
  • The effects of geographical and climatic factors on annual and monthly pan and Penman evaporation were analyzed. 52 climatological stations were selected and trend analyses were performed. Furthermore, cluster analysis and multiple linear regression analysis were performed to understand the effects of geographical and climatic factors on pan and Penman evaporation. Based on stepwise multiple linear regression analysis, annual pan evaporation is proved to be mainly controlled by urbanization as geographical factor, and annual pan evaporation is also controlled by temperature, relative humidity, wind speed, and solar radiation as climatic factor. Especially wind speed is considered to be most significant climatic factor which affects pan evaporation. Meanwhile, Penman evaporation is not affected by geographical factors but it is affected by climate factors such as temperature, relative humidity, wind speed, and solar radiation except precipitation. Furthermore, the study results show that only proximity to coast affects pan evaporation trend on July; however, geographical and climatic factors do not affect pan evaporation trends in annual basis and monthly basis (January, April, and October). On the other hand, Penman evaporation trends were not affected by geographical factors in annual and monthly basises.

Seasonal Variations of the Evaporation in Korea (증발량의 시공적 변화)

  • 이광호;김문일
    • Water for future
    • /
    • v.18 no.3
    • /
    • pp.243-251
    • /
    • 1985
  • The distributions of the copper plated(small) pan evaporation in both space and time are analysed with the data observed, and the lake and the potential evaportranspiration are estimated from the climatological data. These value are compared with each other and to the precipitation for deducing the seasonal amounts and variations of water budgets in the selected basins and regions. The meteorological factor which is closely associated with the small pan evaporation are hardly recognizable when they are used as the monthly values. The relationships among the small pan, the Class A pan and the lake evaporation are well correlated with each other with correlation coefficient of above 0.90, so it may be possible to derve other evaporations from knowing one evaporation. The ratio of the Class A pan and the lake evaporation to the small pan evaportion in annual are about 73% and 55%, repectively, except the mountaineous area where the values are about 10% less than those. The evapotranspiration reach about 40∼60% of the annumal precipitation, but in May and October two values are nearly same. The frequencies of the monthly evaportion in class intervals in the regions are also provided.

  • PDF

Development of pan coefficient model for estimating evaporation: focused on Seoul station (증발량 산정을 위한 증발접시계수 산정모형 개발: 서울지점을 중심으로)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.557-567
    • /
    • 2020
  • The six current models for estimating pan coefficient were applied to test the applicability of models in Seoul, South Korea. The models are Cuenca's model, Snyder's model, Pereira et al.'s model, Allen et al.'s model, Orang's model, and Raghuwanshi and Wallender's model. The estimated pan coefficients were compared with measured one. The measured pan coefficient was obtained by using measured pan evaporation and FAO Penman-Monteith reference evapotranspiration. Estimated evaporation by using estimated pan coefficients was compared with measured one. Furthermore, model for estimating pan coefficient in Seoul was developed. When applying 6 current models for 10 m, 15 m and 20 m fetch distances, pan coefficient estimates from Snyder's model were most similar to measured pan coefficients for all fetch distances. On the other hand, pan coefficient estimates from Pereira et al.'s model were most different from measured one. Therefore, model for estimating pan coefficient in Seoul was developed by modifying Snyder's model. When applying developed model, estimated monthly average evaporation was 92.1 mm for 10 m, 15 m and 20 m fetch distances and measured one was 91.9 mm, indicating that evaporation estimate from developed model is closest to measured one, compared with those of current models.

Analysis of Pan Evaporation Data from 1973 to 2004 in South Korea (1973년부터 2004년까지의 관측된 대형증발량 자료 분석)

  • Kim, Gwangseob;Yim, TaeKyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.583-596
    • /
    • 2006
  • Evaporation is an essential parameter in Global water-energy cycle and the variability of evaporation affects water resources planning and managements. In this study, the temporal variability of pan evaporation data was analyzed and trend analysis of the data using Mann-Kendall test. The relationships among evaporation and rainfall, air temperature, humidity, cloudness were analyzed. Even though the longterm trends of air temperature and rainfall increases, that of evaporation except Jinju and Yeosoo results decreases as worldwide observations. Results demonstrate that decrease of pan evaporation represents increase of terrestrial evaporation as Brutsaert and Parlange(1998)'s analysis.

Analysis on the Change in the Pan Evaporation Rate in the Coastal Zone (우리나라 연안의 팬증발량 변화 양상 분석)

  • Lee, Khil-Ha;Oh, Nam-Sun;Jeong, Shin-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.3
    • /
    • pp.244-252
    • /
    • 2007
  • A long-term change in the evaporation rate have an influence on the hydrologic processes at the interface between the land surface-air and crop yield. Several previous studies have reported declines in pan evaporation rate, while actual evaporation rate is expected to increase due to anthropogenic global change in the future. The decreasing trend of pan evaporation rate might be involved with global warming and accordingly the trend of annual pan evaporation rate also needs to be checked here in Korea. In this study, 14 points of pan evaporation observation are intensively studied to investigate the trend of pan evaporation for the time period of 1970-2000. Annual pan evaporation is decreasing at the rate of 1.6mm/yr, which corresponds to approximately 50mm for 30 years. Annual pan evaporation rate is larger by $\sim10%$ at the coastal area and decreasing rate is faster as -2.46 mm/yr per year, while that is -0.82 mm/yr per year at the in-land area. The results of the Mann-Kendall trend test shows 4 points are decreasing and 10 points are unchanged with 95% confidence interval. But national annual average values show the decreasing trend of pan evaporation rate as a whole, which corresponds to general trend all over the world. This study will contribute to a variety of studies on water resources, hydrology, agricultural engineering, meteorology, and coastal engineering in association with future global climate change.

Applicability evaluation of aerodynamic approaches for evaporation estimation using pan evaporation data (증발접시 증발량자료를 이용한 공기동력학적 증발량 산정 방법의 적용성 평가)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.781-793
    • /
    • 2017
  • In this study, applicabilities of aerodynamic approaches for the estimation of pan evaporation were evaluated on 56 study stations in South Korea. To accomplish this study purpose, previous researchers' evaporation estimation equations based on aerodynamic approaches were grouped into seven generalized evaporation models. Furthermore, four multiple linear regression (MLR) models were developed and tested. The independent variables of MLR models are meteorological variables such as wind speed, vapor pressure deficit, air temperature, and atmospheric pressure. These meteorological variables are required for the application of aerodynamic approaches. In order to consider the effect of autocorrelation, MLR models were developed after differencing variables. The applicability of MLR models with differenced variables was compared with that of MLR models with undifferenced variables and the comparison results showed no significant difference between the two methods. The study results have indicated that there is strong correlation between estimated pan evaporation (using aerodynamic models and MLR models) and measured pan evaporation. However, pan evaporation are overestimated during August, September, October, November, and December. Most of meteorological variables that are used for MLR models show statistical significance in the estimation of pan evaporation. Vapor pressure deficit was turned out to be the most significant meteorological variable. The second most significant variable was air temperature; wind speed was the third most significant variable, followed by atmospheric pressure.

Evaluation of applicability of pan coefficient estimation method by multiple linear regression analysis (다변량 선형회귀분석을 이용한 증발접시계수 산정방법 적용성 검토)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.229-243
    • /
    • 2022
  • The effects of monthly meteorological data measured at 11 stations in South Korea on pan coefficient were analyzed to develop the four types of multiple linear regression models for estimating pan coefficients. To evaluate the applicability of developed models, the models were compared with six previous models. Pan coefficients were most affected by air temperature for January, February, March, July, November and December, and by solar radiation for other months. On the whole, for 12 months of the year, the effects of wind speed and relative humidity on pan coefficient were less significant, compared with those of air temperature and solar radiation. For all meteorological stations and months, the model developed by applying 5 independent variables (wind speed, relative humidity, air temperature, ratio of sunshine duration and daylight duration, and solar radiation) for each station was the most effective for evaporation estimation. The model validation results indicate that the multiple linear regression models can be applied to some particular stations and months.