• Title/Summary/Keyword: pairing protocol

Search Result 48, Processing Time 0.033 seconds

A Comparative Study of Twist Property in KSS Curves of Embedding Degree 16 and 18 from the Implementation Perspective

  • Khandaker, Md. Al-Amin;Park, Taehwan;Nogami, Yasuyuki;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • Implementation of faster pairing calculation is the basis of efficient pairing-based cryptographic protocol implementation. Generally, pairing is a costly operation carried out over the extension field of degree $k{\geq}12$. But the twist property of the pairing friendly curve allows us to calculate pairing over the sub-field twisted curve, where the extension degree becomes k/d and twist degree d = 2, 3, 4, 6. The calculation cost is reduced substantially by twisting but it makes the discrete logarithm problem easier if the curve parameters are not carefully chosen. Therefore, this paper considers the most recent parameters setting presented by Barbulescu and Duquesne [1] for pairing-based cryptography; that are secure enough for 128-bit security level; to explicitly show the quartic twist (d = 4) and sextic twist (d = 6) mapping between the isomorphic rational point groups for KSS (Kachisa-Schaefer-Scott) curve of embedding degree k = 16 and k = 18, receptively. This paper also evaluates the performance enhancement of the obtained twisted mapping by comparing the elliptic curve scalar multiplications.

Electronic Payment Protocol using GDHP Blind Signature Scheme (GDHP 은닉서명기법을 이용한 전자지불 프로토콜)

  • Lee, Hyun-Ju;Rhee, Chung-Sei
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.12-20
    • /
    • 2006
  • In this paper, we propose electronic payment protocol using GDHP blind signature scheme to activate e-business in the wire/wireless integrated environment. The protocol applied elliptic curve algorithm on the GDHP base and improved the efficiency of the existing blind signature technique on the basis of communication frequency and calculation number. And the protocol accelerated speed and strengthened safety against man-in-the-middle attacks and forward secrecy because the certification between individuals is performed by the session key created by Weil paring using elliptic curve cryptosystem in the limited entity $F_q$ instead of the certification used in the existing PayWord protocol.

  • PDF

SECURE IDENTIFICATION AND SIGNATURE USING ZERO-KNOWLEDGE PROOFS AND BILINEAR PAIRINGS

  • Choi, Byung Mun;Lee, Young Whan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.403-411
    • /
    • 2008
  • In 2005, A. Saxena, B. Soh and S. Priymak [10] proposed a two-flow blind identification protocol. But it has a weakness of the active-intruder attack and uses the pairing operation that causes slow implementation in smart cards. In 2008, Y. W. Lee [9] made a method of the active-intruder attack on their identification scheme and proposed a new zero-knowledge blind identification protocol for smart cards. In this paper, we give more simple and fast protocols than above protocols such that the prover using computationally limited devices such as smart cards has no need of computing the bilinear pairings. Computing the bilinear pairings is needed only for the verifier and is secure assuming the hardness of the Discrete-Logarithm Problem (DLP).

  • PDF

Two-round ID-based Group Key Agreement Fitted for Pay-TV System (유료 방송 시스템에 적합한 ID기반의 2 라운드 그룹키 동의 프로토콜)

  • Kim Hyunjue;Nam Junghyun;Kim Seungjoo;Won Dongho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2005
  • A group key agreement protocol allows a group of user to share a key which may later be used to achieve certain cryptographic goals. In this paper, we propose a new scalable two-round ID-based group key agreement protocol which would be well fit to a Pay-TV system, additionally. to the fields of internet stock quotes, audio and music deliveries, software updates and the like. Our protocol improves the three round poop key agreement protocol of Nam et al., resulting in upgrading the computational efficiency by using the batch verification technique in pairing-based cryptography. Also our protocol simplifies the key agreement procedures by utilizing ID-based system. We prove the security of our protocol under the Computational Diffie-Hellman assumption and the Bilinear Decisional Diffie-Hellman assumption. Also we analyze its efficiency.

Authenticated Identity-based Key Agreement Protocols in a Multiple Independent PKG Environment (다중 독립 PKG환경에서 인증된 신원기반 키 동의 프로토콜)

  • Lee Hoonjung;Kim Hyunsook;Kim Sangjin;Oh Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.4
    • /
    • pp.11-27
    • /
    • 2005
  • To date, most identity-based key agreement protocols are based on a single PKG (Private Key Generator) environment. In 2002, Chen and Kudla proposed an identity-based key agreement protocol for a multiple PKG environment, where each PKG shares identical system parameters but possesses distinct master key. However, it is more realistic to assume that each PKG uses different system parameters including the PKG's master key. In this paper, we propose a new two party key agreement protocol between users belonging to different PKGs that do not share system parameters. We also extend this protocol to two types of tripartite key agreement protocols. We show that our two party protocol requires minimal amount of pairing computation for a multiple PKG environment and our tripartite protocol is more efficient than existing protocols. We also show that the proposed key agreement protocols satisfy every security requirements of key agreement protocol.

A Ternary Tree-based Authenticated Group Key Agreement For Dynamic Peer Group (동적 피어 그룹을 위한 삼진 트리방식의 인증된 그룹 키 합의 프로토콜)

  • Kim, Ho-Hee;Kim, Soon-Ja
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.6
    • /
    • pp.1253-1263
    • /
    • 2012
  • As a result of the increased popularity of group oriented applications, the design of an efficient authenticated group key agreement protocol has received a lot of attention. Lee et al. proposed a tree-based group key agreement protocol, which applies a ternary key tree structure and pairing-based cryptography to the key agreement of Dynamic Peer Group. In their protocol, only the group sponsor knows all member's session random keys computes all blinded keys. In addition, when the group sponsor leaves a group, all nodes of the tree should be changed. In this paper, we present the modified protocol that has several sponsors. Since a secret value for each member isn't given to the group sponsor, the key renewing of our protocol is more secure and efficient than that of Lee et al.'s protocol in the previous case. Therefore, our protocol is suitable to Dynamic Peer Groups.

ID-based Payment Protocol for Mobile Electronic Commerce (모바일 전자상거래를 위한 ID 기반 지불 프로토콜)

  • 이현주;김선신;이충세
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.4
    • /
    • pp.405-413
    • /
    • 2004
  • Design an efficient and secure electronic payment system is important for M-Commerce. In this paper, we propose an efficient Micro-Payment Protocol that allows multiple transactions using ID-based public key cryptosystem. Current PayWord system requires to generate certificate of the vendor for each transaction. In this paper, we use a session key instead of certificate key generated by Weil Pairing which use an Elliptic Curve Cryptosystem over finite field $F_q$ for transactions Therefore, it is more secure in Known key attacks as well as Man-in-the-middle attacks.

Optimization of multiplication-techniques for a Pairing for sensor network security protocol based on bilinear map (Bilinear map 기반 센서네트워크 보안프로토콜을 위한 Pairing용 곱셈 최적화 기법)

  • Seo, Hwa-Jeong;Lee, Dong-Geon;Kim, Ho-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06a
    • /
    • pp.166-170
    • /
    • 2010
  • 센서네트워크는 유비쿼터스 환경을 실현할 수 있는 기술로서, 최근 무인 경비 시스템이나 에너지 관리, 환경 모니터링, 홈 자동화, 헬스케어 응용 등과 같은 다양한 응용 분야에 활용되고 있다. 하지만 자신의 정보가 무선통신상에 쉽게 노출됨으로써 도청과 전송 메시지에 대한 위변조, 서비스 거부 공격을 받을 위험이 있다. 더욱이 센서네트워크의 자원 제약성(적은 메모리, 컴퓨팅 성능의 제약)과 키분배 관리의 어려움으로 인해 기존의 공개키, 대칭키 기반의 면안프로토콜을 대체할 수 있는 프로토콜이 필요하다. 그러므로 키분배 관리에 장 접을 가지는 Bilinear map 기반 프로토콜은 적합한 대안이다. 하지만 프로토콜에 사용되는 Pairing연산은 높은 컴퓨팅 성능이 요구된다. 따라서 제한된 성능을 가진 센서상의 구현을 위해서는 Computation Cost를 줄이고 연산 수행 속도를 가속화 할 필요성이 있다. 본 논문에서는 프로토콜 구현에 필요한 Pairing의 핵심 연산인 Multiplication을 대표적인 센서노드 프로세서인 MSP430상에서 최적화 구현함으로써 성능을 개선한다.

  • PDF

ZERO-KNOWLEDGE GROUP IDENTIFICATION AND HIDDEN GROUP SIGNATURE FOR SMART CARDS USING BILINEAR PAIRINGS

  • Lee, Young Whan;Choi, Byung Mun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.355-366
    • /
    • 2007
  • In this paper, we propose a new blind group identification protocol and a hidden group signature protocol as its application. These protocols involve many provers and one verifier such that (1) the statement of all the provers are proved simultaneously, (2) and also all the provers using computationally limited devices (e.g. smart cards) have no need of computing the bilinear pairings, (3) but only the verifier uses the bilinear pairings. A. Saxena et al. proposed a two-round blind (group) identification protocol in 2005 using the bilinear pairings. But it reveals weakness in the active-intruder attack, and all the provers as well as the verifier must have devices computing bilinear pairings. Comparing their results, our protocol is secure from the active-intruder attack and has more fit for smart cards. In particular, it is secure under only the assumption of the hardness of the Discrete-Logarithm Problem in bilinear groups.

  • PDF

Efficient Certificateless Authenticated Asymmetric Group Key Agreement Protocol

  • Wei, Guiyi;Yang, Xianbo;Shao, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3352-3365
    • /
    • 2012
  • Group key agreement (GKA) is a cryptographic primitive allowing two or more users to negotiate a shared session key over public networks. Wu et al. recently introduced the concept of asymmetric GKA that allows a group of users to negotiate a common public key, while each user only needs to hold his/her respective private key. However, Wu et al.'s protocol can not resist active attacks, such as fabrication. To solve this problem, Zhang et al. proposed an authenticated asymmetric GKA protocol, where each user is authenticated during the negotiation process, so it can resist active attacks. Whereas, Zhang et al.'s protocol needs a partially trusted certificate authority to issue certificates, which brings a heavy certificate management burden. To eliminate such cost, Zhang et al. constructed another protocol in identity-based setting. Unfortunately, it suffers from the so-called key escrow problem. In this paper, we propose the certificateless authenticated asymmetric group key agreement protocol which does not have certificate management burden and key escrow problem. Besides, our protocol achieves known-key security, unknown key-share security, key-compromise impersonation security, and key control security. Our simulation based on the pairing-based cryptography (PBC) library shows that this protocol is efficient and practical.