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SECURE IDENTIFICATION AND SIGNATURE USING
ZERO-KNOWLEDGE PROOFS AND BILINEAR

PAIRINGS

Byung Mun Choi* and Young Whan Lee**

Abstract. In 2005, A. Saxena, B. Soh and S. Priymak [10] pro-
posed a two-flow blind identification protocol. But it has a weak-
ness of the active-intruder attack and uses the pairing operation
that causes slow implementation in smart cards. In 2008, Y. W.
Lee [9] made a method of the active-intruder attack on their identi-
fication scheme and proposed a new zero-knowledge blind identifi-
cation protocol for smart cards. In this paper, we give more simple
and fast protocols than above protocols such that the prover using
computationally limited devices such as smart cards has no need of
computing the bilinear pairings. Computing the bilinear pairings is
needed only for the verifier and is secure assuming the hardness of
the Discrete-Logarithm Problem (DLP).

1. Introduction

A. Saxena, B. Soh and S. Priymak [10] proposed a two-flow blind
identification protocol using zero-knowledge proofs which require only
two rounds and can be considered perfectly zero-knowledge under cer-
tain interactivity assumptions. Their protocol uses bilinear pairings and
can be encapsulated in smart cards disguised for Elliptic Curve Cryp-
tography (ECC). But, unfortunately pairing implementation attempts
in limited devices such as smart cards reveal that code may be slow,
resource consuming and tricky to program, although pairing is a cubic-
time implementation. Note that an identification protocol is an interac-
tive protocol between the prover and verifier, in which the prover tries to
identify itself to the verifier by demonstrating knowledge of a certain key
associated with the prover. In the secret key setting, the key is shared
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between prover and the verifier, whereas in the public key setting, the
key is the private key of the prover. In this paper we are interested in
the public key setting. In 2008, Y. W. Lee [9] made a method of the
active-intruder attack on their identification scheme and propose a new
zero-knowledge blind identification protocol for smart cards.

In this paper, we give simple and fast protocols such that the prover
using computationally limited devices such as smart cards has no need
of computing the bilinear pairings. Computing the bilinear pairings is
needed only for the verifier and is secure assuming the hardness of the
Discrete-Logarithm Problem. The organization of the paper is as follows;
In Section 2, we present the preliminaries of bilinear paring and back-
ground. In Section 3, we propose our new secure identification protocol
and then in Section 4, we prove the security of the proposed protocol.
In Section 5, we propose a hidden signatures. Finally, a conclusion is
given in Section 6.

2. Bilinear pairings and background

The cryptology using pairings is based on the existence of efficiently
computable non-degenerate bilinear maps (or pairings) which can be
abstractly described as follows; Let G1 be an additive cyclic group of
the prime order q and G2 be the multiplicative cyclic group of the same
order. Practically we think of G1 as a group of points on an elliptical
curve on Z∗

q , and G2 as a subgroup of the multiplicative group of a
finite field Z∗

qk for some k ∈ Z∗
q . Let P be a generator of G1. A map

ê : G1 × G1 → G2 is called bilinear pairing if ê satisfies the following
properties:

1. Bilinearity : For all P,Q ∈ G1 and a, b ∈ Z∗
q , ê(aP, bQ) = ê(P,Q)ab

2. No-degeneracy : P 6= 0 ⇒ ê(P, P ) 6= 1
3. Computability : There is an efficient algorithm to compute ê(P,Q)

for all P,Q ∈ G1

Note that modified Weil pairing and Tate pairing are examples of
bilinear pairings [3, 4]. Without going into the details of generating
suitable curves, we may assume that q ≈ 2171 so that the fastest algo-
rithms for computing discrete logarithms in G1 take about 285 iterations
[12]. We define the following problems in G1.

1. Discrete-Logarithm Problem (DLP) : Given P,Q ∈ G1 , find an
integer a ∈ Z∗

q such that aP = Q .
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2. Diffie-Hellman Problem (DHP) : Given P, xP, rxP ∈ G1 for un-
knowns x, r ∈ Z∗

q , compute rP ∈ G1.

In this section, we introduce a two-round identification schemes using
a public key cryptosystem, which proposed by A. Saxena, B. Soh and
S. Priymak [10] and Y. W. Lee [9]. Assume that Alice and Bob are
two users and Alice wants to identify herself to Bob. We only consider
one-way identification and ignore the case of Bob identifying himself
to Alice. A round of a protocol involves the exchange of one message.
A sequence of two synchronous message transmissions constitutes two
separate rounds, while any number of asynchronous messages is part of
the same round. A single message passing is a one-round protocol.

1. The SSP (A. Saxena, B. Soh and S. Priymak [10]) Scheme:
(1) B chooses r ∈ Zq uniformly at random and compute R = rY
and U = r2P . Then B sends < R,U > to A.
(2) After receiving < R, U >, A computes 1

xR. A rejects and
stops if ê( 1

xR, 1
xR) 6= ê(U,P ) ; otherwise A generates Q ∈ G1 and

computes Z = V + xQ. And then A sends < Z, Q > to B.
(3) After receiving < Z, Q > , B verifies < Z, Q > ;
If ê(Z − rP, P ) = ê(Q,Y ) , then B accepts : otherwise, B rejects.

2. The YWL (Y. W. Lee [9]) Scheme:
(1) B chooses r ∈ Zq uniformly at random and compute V =
ê(rxP, xP ) = Crx2

,W = ê(rP, xP ) = Crx and h(V ). Then B
sends < h(V ),W > to A.
(2) After receiving < h(V ),W >, A rejects and stops if h(V ) 6=
h(W x), or W /∈ G2 ; otherwise A chooses z ∈ Zq and computes
X = W 1

xCx3z and T = W x2z. And then A sends < X,T > to B.

(3) After receiving < X,T > , B accepts if X = CrT
1
r : otherwise,

B rejects.

Informally, an active adversary is the one who alters, injects, drops
and/or diverts messages between the prover and the verifier. Note that
there are three approaches to handling this definitional issue [1, 5, 11].
D. R. Stinson, J. Wu defined a successful active-intruder attack as follow:
In an active-intruder attack, the adversary is successful if the (honest)
verifier accepts in a session after the adversary becomes active in the
same session [11]. Young Whan Lee [9] suggested an example of the
active-intruder attack on SSP scheme.
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In this paper, we propose a simple and fast 2-flow identification pro-
tocol for smart cards using a public key cryptosystem. Our proposed
protocol has several advantages;

1. For a computationally limited device such as a smart card, the
prover in our protocol does not use bilinear pairings and only the
verifier uses them. and Our protocol is more simpler and faster
than YWL scheme.

2. Our protocol is secure assuming only the hardness of the Discrete-
Logarithm Problem in bilinear groups as well as YWL scheme.
Note that the SSP scheme needs another assumption such as the
hardness of the DHP, EDHP or LDHP [10].

3. The SSP scheme has a weakness of the active-intruder attack, but
our scheme does not as well as YWL scheme.

3. Our new secure blind identification

3.1. Initial identification setup

Let TA be the trusted authority, by assuming the existence of a
trusted authority, who will issue certificates for all potential participants
in the protocol. The initial setup for our protocol as following;

Protocol 3.1: Initial identification scheme setup

Input: Security parameter k ∈ Z+ .

1. The TA generates a prime q, two groups G1, G2 of order q and an
admissible bilinear map ê : G1 ×G1 → G2.

2. The TA chooses a random generator P ∈ G1, a random s ∈ Z∗
q

and sets Ppub = sP .
3. The TA publishes a hash function h : G2 → {0, 1}k.
4. The TA computes C such that C = ê(P, P ), and publishes the

system parameters < q,G1, G2, P, Ppub, ê, C, h >.
5. Each potential prover A chooses a private key x uniformly from

Z∗
q at random, computes xP and registers xP as A’s public key.

3.2. Protocol description
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In a session of the protocol, the prover A tries to convince the verifier
B of A’s identity. B accepts only if A respond to B’s challenge in an
appropriate way. The steps in a session of our scheme as following;

Protocol 3.2: A 2-flow new identification protocol

1. The verifier B chooses r ∈ Z∗
q uniformly at random, and computes

V = ê(rP, xP ) = Crx, W = ê(rP, P ) = Cr and h(V ). Then B
sends < h(V ),W > to the prover A.

2. After receiving < h(V ),W >, A rejects and stops if h(V ) 6=
h(W x), or W /∈ G2; otherwise A chooses z ∈ Zq, and compute
X = W x+zx, h(X) and T = W zx. Then A sends < h(X), T > to
B.

3. After receiving < h(X), T >, B accepts if h(X) = h(V ); otherwise
B rejects.

3.3. Completeness

Suppose A and B are both honest.
1. After receiving the challenge < h(V ),W >, A can check to see

if h(V ) = h(W x), because W x = Crx = V = Crx. Thus A
can accept or reject. If A accepts then A sends the response <
h(X), T > to B.

2. Then B can checks to see if h(X) = h(V ), because X = TV . Thus
B also can accept or reject.

4. Security of our new identification protocol

In this section, we prove that our new identification protocol is perfect
zero-knowledge.

4.1. Soundness

Assuming an honest verifier, we must show that a dishonest prover
cannot succeed except with a negligible probability. Given xP, h(V ), and
W , the task of a dishonest prover is to compute a pair < h(X), T > such
that W = ê(rP, P ) = Cr, X = W x+zx, and T = W zx. We show that this
is an instance of the DLP in the following Theorem 4.1. The knowledge
of W and h(V ) does not give a dishonest prover any additional advantage
in solving this DLP instance because deciding if is an instance of the DLP
as the Theorem 4.1. Thus, the proof is sound from a verifier’s view as
long as the DLP is intractable.
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Theorem 4.1. Assume that the DLP is hard and h is a random oracle
hash function. Then it is hard for the dishonest prover to construct a
pair < h(X), T > with X = TV .

Proof. The dishonest prover knows

P, xP,Cx = ê(P, xP ),W = Cr, h(V )

and he does not know r and x in Z∗
q . Thus we may assume that the

dishonest prover computes < h(X ′), T ′ > with X ′ = T ′V . Then X ′ =
Crx′+rz′x′

, and T ′V = Crz′x′+rx′
. From X ′ = T ′V , we have Crx′

= Crx.
Since the mapping fP : G1 × G1 → G2 given by fP (Q) = ê(Q,P ) is
one-to-one mapping [4], we have

Crx = Crx′ ⇔ ê(rxP, P ) = ê(rx′P, P )

⇔ fP (rxP ) = fP (rx′P ) ⇔ rxP = rx′P.

Let R = rP and Q = rxP . Thus we know that to construct a pair
< h(X), T > with X = TV for unknowns r, x ∈ Z∗

q is to construct x′

satisfying x′R = Q for the known R,Q ∈ G1. This is the Discrete-
Logarithm Problem (DLP) and thus it is hard for a dishonest prover to
construct < h(X), T > with X = TV .

4.2. Honest verifier zero-knowledge

The transcript consists of the messages exchanged between the two
parties. The definition of perfect zero-knowledge can be found in [3]. In
Theorem 4.2, we construct a simulator that can generate an accepting
transcript

{h(V ),W, h(X), T}
without interaction with a prover and then show that the simulated
and real distributions are identical. Thus our protocol is perfect zero-
knowledge for an honest verifier.

Theorem 4.2. Protocol 3.2 is perfect zero-knowledge for an honest
verifier.

Proof. Let Dr be the set of all real transcripts obtained by a prover
and an honest verifier as the following form;

Dr = {h(V ),W, h(X), T}
= {h(Crx, Cr, h(Crx+rzx|z, x ∈ Z∗

q }
where r is chosen by the verifier uniformly at random from Z∗

q and also
x, z is chosen by the prover uniformly at random from Z∗

q . Now let Er

be the set of simulated transcripts can be constructed by the verifier
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as following; The verifier chooses a uniformly at random from Z∗
q and

computes the set Er of the simulated transcripts by

Er = {h(Crx), Cr, h(Crx+rα), Crα|α ∈ Z∗
q }

using Crx = ê(rxP, P ), Cr = ê(rP, P ) and Crx+rα = ê(rxP, P )ê(rαP, P ).
Then we have Dr = Er. That is, Dr and Er have identical probability
distribution. Therefore the above protocol is perfect zero-knowledge for
an honest verifier.

4.3. Dishonest verifier zero-knowledge

A dishonest verifier will generate < h(V ),W > with h(V ) = h(W x)
non-uniformly. In other words, a dishonest verifier will not know r
corresponding to V . To prove zero-knowledge in this case, it is enough
to prove that the probability of a dishonest verifier succeeding is the
probability solving the Discrete-Logarithm Problem.

Theorem 4.3. Assume that the DLP is hard and h is a random oracle
hash function. Then it is hard for a dishonest verifier to construct V
such that h(V ) = h(W x) for given W,P , and xP .

Proof. To construct V , a dishonest verifier must construct Cr′x such
that Cr′x = Crx for unknowns r, x ∈ Z∗

q . By the same method as the
proof of Theorem 4.1, Cr′x = Crx if and only if r′xP = rxP . Thus to
construct V for a dishonest verifier is equivalent to compute r′ ∈ Z∗

q

such that r′Q = R for given P, xP = Q, rxP = R. This is the Discrete-
Logarithm Problem and so it is hard.

4.4. Passive adversary blindness

Our protocol has a passive adversary blindness property. That is, any
polynomially bounded adversary has not a non-negligible advantage in
deciding the honesty of the participants in the protocol. Assuming that
the DLP is intractable, we have

1. It is impossible for a passive adversary to decide the honesty of the
prover: given P, xP, h(V ),W , deciding if V = W x is an instance
of the DLP as Theorem 4.3.

2. Similarly it is impossible for a passive adversary to decide the
honesty of the verifier: given P, xP, h(X), T deciding if X = TV
is an instance of the DLP as Theorem 4.1.
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4.5. Knowledge extractor

Let L1 = {< h(X), T > |X = TV }. Then a prover ID essentially
proves knowledge of the witness < h(X), T >∈ L1 using the shared
string < P, xP,Cx, rP, h(rxP ) >. Clearly L1 ∈ NP . Assume that a
dishonest prover ID∗ is able to make any verifier accept. That is, given
< P, xP, Cx, rP, h(rxP ) >, ID∗ can always output a pair < h(X ′), T ′ >
such that X ′ = T ′V . By simulating the honest verifier itself and by the
hardness of DLP, ID∗ can not obtain < h(X ′), T ′ >, the witness that
< X ′, T ′ >∈ L1 . Thus our protocol is a “proof of knowledge”

5. Signature

When user A identifies to the server B, A can also send plain text
message along with hidden signature such that B can extract the signa-
ture.

Protocol 5.1: Hidden signature protocol

1. Initialization : B asks A to identify itself by sending the challenge
< h(V ),W > in the first step of Protocol 3.2.

2. Signing : Let M ∈ G1 be the message to be signed and H(M) = β,
where H : G1 → Z∗

q is a hash function. A computes W x and check
that h(V ) = h(W x). And then A choose z ∈ Z∗

q randomly and
compute h(X) = h(TV β) = h(Crβx+rzxβ) and T = W rzx. The
3-pair < h(X), T, M > is sent to B.

3. Verification : After receiving < h(X), T, M >, B extracts the
signature S = TV . The verification condition is h(X) = h(Sβ).

6. Conclusion

In this paper, we proposed a new secure identification and signature
protocol using zero-knowledge. Only based on the DLP assumption, it is
secure in a random oracle model. Also in our protocol the only verifier
uses bilinear pairings but not the prover. Thus smart cards with our
scheme need not have devices for bilinear pairings. Under the methods
of security proof given by Stinson and Wu [11], our protocol is secure
against active-intruder attacks but Saxena et al.’s scheme [10] has a
weakness of them. Also our proposed protocol is more simple and fast
than YWL’s scheme[9] because we reduced the number of computations.
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