• 제목/요약/키워드: pairing exchange

검색결과 16건 처리시간 0.018초

Column cleaning, regeneration and storage of silica-based columns (실리카 기반 컬럼의 세척, 재생 및 보관 가이드)

  • Matt James;Mark Fever
    • FOCUS: LIFE SCIENCE
    • /
    • 제1호
    • /
    • pp.1.1-1.4
    • /
    • 2024
  • This article provides comprehensive guidance on the maintenance, cleaning, regeneration, and storage of silica-based HPLC (High-Performance Liquid Chromatography) columns. The general considerations emphasize the importance of using in-line filters and guard cartridges to protect columns from blockage and irreversible sample adsorption. While these measures help, contamination by strongly adsorbed sample components can still occur over time, leading to an increase in back pressure, loss of efficiency, and other issues. To maximize column lifetime, especially with UHPLC (Ultra-High Performance Liquid Chromatography) columns, it is advisable to use ultra-pure solvents, freshly prepared aqueous mobile phases, and to filter all samples, standards, and mobile phases. Additionally, an in-line filter system and sample clean-up on dirty samples are recommended. However, in cases of irreversible compound adsorption or column voiding, regeneration may not be possible. The document also provides specific recommendations for column cleaning procedures, including the flushing procedures for various types of columns such as reversed phase, unbonded silica, bonded normal phase, anion exchange, cation exchange, and size exclusion columns for proteins. The flushing procedures involve using specific solvents in a series to clean and regenerate the columns. It is emphasized that the flow rate during flushing should not exceed the specified limit for the particular column, and the last solvent used should be compatible with the mobile phase. Furthermore, the article outlines the storage conditions for silica based HPLC columns, highlighting the impact of storage conditions on the column's lifetime. It is recommended to flush all buffers, salts, and ion-pairing reagents from the column before storage. The storage solvent should ideally match the one used in the initial column test chromatogram provided by the manufacturer, and column end plugs should be fitted to prevent solvent evaporation and drying out of the packing bed.

  • PDF

Mg2+-dependency of the Helical Conformation of the P1 Duplex of the Tetrahymena Group I Ribozyme

  • Lee, Joon-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권10호
    • /
    • pp.1937-1940
    • /
    • 2008
  • The P1 duplex of Tetrahymena group I ribozyme is the important system for studying the conformational changes in folding of ribozyme. The formation of the P1 duplex between IGS and substrate RNA and the catalytic activity of ribozyme require a variety of metal ions such as $Mg^{2+}$ and $Mn^{2+}$. In order to investigate the effect of the $Mg^{2+}$ concentration on the conformation of the P1 duplex, the NMR study was performed as a function of $Mg^{2+}$ concentration. This study revealed that the less stable AU-rich region formed duplex at $50{^{\circ}C}$ under high $Mg^{2+}$ concentration condition but melts out under low $Mg^{2+}$ concentration condition. It was also found that in the active conformation under 10 mM $MgCl_2$ condition, the unstable central G${\cdot}$U wobble pair maintains the significant base pairing up to $50{^{\circ}C}$. This study provides the information of the unique feature of the P1 duplex structure and the roll of $Mg^{2+}$ ion on the formation of the active conformation.

Removal of Toxic Pollutants from Aqueous Solutions by Adsorption onto Organo-kaolin

  • Sayed Ahmed, S.A.
    • Carbon letters
    • /
    • 제10권4호
    • /
    • pp.305-313
    • /
    • 2009
  • In this study, the adsorption of toxic pollutants onto cetyltrimethylammonium kaolin (CTAB-Kaolin) is investigated. The organo-kaolin is synthesized by exchanging cetyltrimethylammonium cations (CTAB) with inorganic ions on the surface of kaolin. The chemical analysis, the structural and textural properties of kaolin and CTAB-kaolin were investigated using elemental analysis, FTIR, SEM and adsorption of nitrogen at $-196^{\circ}C$. The kinetic adsorption and adsorption capacity of the organo-kaolin towards o-xylene, phenol and Cu(II) ion from aqueous solution was investigated. The kinetic adsorption data of o-xylene, phenol and Cu(II) are in agreement with a second order model. The equilibrium adsorption data were found to fit Langmuir equation. The uptake of o-xylene and phenol from their aqueous solution by kaolin, CTAB-kaolin and activated carbon proceed via physisorption. The removal of Cu(II) ion from water depends on the surface properties of the adsorbent. Onto kaolin, the Cu(II) ions are adsorbed through cation exchange with $Na^+$. For CTAB-kaolin, Cu(II) ions are mainly adsorbed via electrostatic attraction with the counter ions in the electric double layer ($Br^-$), via ion pairing, Cu(II) ions removal by the activated carbon is probably related to the carbon-oxygen groups particularly those of acid type. The adsorption capacities of CTAB-kaolin for the investigated adsorbates are considerably higher compared with those of unmodified kaolin. However, the adsorption capacities of the activated carbons are by far higher than those determined for CTAB-kaolin.

Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells

  • Choi, Eui-Hwan;Yoon, Seobin;Hahn, Yoonsoo;Kim, Keun P.
    • Molecules and Cells
    • /
    • 제40권2호
    • /
    • pp.143-150
    • /
    • 2017
  • Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

Analysis of residual neomycin in honey by LC-MS/MS (LC-MS/MS에 의한 벌꿀 중 잔류 네오마이신의 분석)

  • Shim, Young-Eun;Jeong, Ji-Yoon;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • 제22권4호
    • /
    • pp.319-325
    • /
    • 2009
  • An effective and specific procedure for confirmation of neomycin, aminoglycoside antibiotic in honey was developed and validated. Honey was adjusted to pH 2 with 0.1M HCl and applied to weak cation-exchange SPE cartridge. Neomycin was eluted with basified methanol. Following separation by ion-pairing liquid chromatography, neomycin was analysed with positive electrospray ionization and MRM mode. Quantification was linear over the range of $5.0{\sim}250.0{\mu}g/kg$ ($r^2$ >0.9951). The precision (R.S.D.) and accuracy (as a bias) of quality control samples in honey ranged 11.5~18.7% and 10.9~20.9%, respectively. Established method can be applied to analysis of neomycin in honey.