• Title/Summary/Keyword: paddy soil

Search Result 1,726, Processing Time 0.04 seconds

Observation of Methane Flux in Rice Paddies Using a Portable Gas Analyzer and an Automatic Opening/Closing Chamber (휴대용 기체분석기와 자동 개폐 챔버를 활용한 벼논에서의 메탄 플럭스 관측)

  • Sung-Won Choi;Minseok Kang;Jongho Kim;Seungwon Sohn;Sungsik Cho;Juhan Park
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.436-445
    • /
    • 2023
  • Methane (CH4) emissions from rice paddies are mainly observed using the closed chamber method or the eddy covariance method. In this study, a new observation technique combining a portable gas analyzer (Model LI-7810, LI-COR, Inc., USA) and an automatic opening/closing chamber (Model Smart Chamber, LI-COR, Inc., USA) was introduced based on the strengths and weaknesses of the existing measurement methods. A cylindrical collar was manufactured according to the maximum growth height of rice and used as an auxiliary measurement tool. All types of measured data can be monitored in real time, and CH4 flux is also calculated simultaneously during the measurement. After the measurement is completed, all the related data can be checked using the software called 'SoilFluxPro'. The biggest advantage of the new observation technique is that time-series changes in greenhouse gas concentrations can be immediately confirmed in the field. It can also be applied to small areas with various treatment conditions, and it is simpler to use and requires less effort for installation and maintenance than the eddy covariance system. However, there are also disadvantages in that the observation system is still expensive, requires specialized knowledge to operate, and requires a lot of manpower to install multiple collars in various observation areas and travel around them to take measurements. It is expected that the new observation technique can make a significant contribution to understanding the CH4 emission pathways from rice paddies and quantifying the emissions from those pathways.

Study on the Effect of Deep Fertilization on Paddy Field - Efficiency of Ball Complex Fertilizer Mixed with Zeolite - (수도(水稻)에 대(對)한 심층추비효과(深層追肥効果)에 관(關)한 연구(硏究) - Zeolite 첨가(添加) Ball complex 비료(肥料)의 비효(肥効) -)

  • Kim, Tai-Soon;U., Zang-Kual
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.61-67
    • /
    • 1977
  • A study was conducted in order to compare the topdressing method of the conventional fertilizers as control and the deep application method of the ball complex fertilizer newly developed. The ball complex fertilizer consisted of 5% of nitrogen, 5% of phosphorus, and 7% of potassium. Basal application of nitrogen for the rice plant was the same for both control plots and ball complex plots. One ball complex fertilizer per four hills was applied at depth of 12~13cm 35days before heading stage while control plot received three times topdressing at different growth stages as usual practice. The results obtained were as follows. 1. The ball complex fertilizer applied in the soil was continuously utilized by the rice plants until harvest time while nitrogen and potassium uptake of control plots was reduced rapidly after heading stage. Daily uptake of nitrogen and potassium per hill at maturing stage were 0.45mg and 0.68mg in control plots, but 4.80mg and 7.0mg respectively in ball complex plots. 2. Dry matter productivity of the rice plant in control plots, well coinciding with nutrients uptake pattern, was maximum just after heading stage decreased at maturing stage. But dry matter productivity in ball complex plots was much higher at maturing stage than at heading stage. 3. Ball complex application increased effective tillering rate, causing higher panicle number per hill. 4. Ball complex application brought about 528kg/10a of hulled grain yield while the conventional practice 423kg/10a. 5. Deep application of ball complex was superior to usual practice in terms of yield components such as panicle number per hill, filled grain number per panicle, maturing rate, and 1,000 grain weight. 6. From the morphological characteristics point of view, the deep application of ball complex made the flag leaf and the 2nd leaf heavier, larger and broader as compared to control treatment. 7. It is considered that by applying the ball complex fertilizer at depth of 12~13cm sufficient amount of nitrogen and potassium could be utilized by rice plants during the maturing stage and assimilated in the leaf blade, consequently making the flag leaf and the 2nd leaf bigger and healthier. The fact can easily explain that the ball complex plots had higher capacity of photosynthesis, less discoloration of lower leaves, bigger leaf area index, and better grain yield as compared to the conventional practice. In conclusion the deep application method of the ball complex fertilizer was superior to the routine topdressing method of the usual fertilizers.

  • PDF

Studies on Characteristics of Sprouting and Occurrence on paddy field of Water Chestnut(Eleocharis Kuroguwai Ohwi) (올방개 괴경(塊莖)의 맹아(萌芽) 특성(特性)과 본답(本畓)에서의 발생(發生)에 관한 연구(硏究))

  • Kim, H.D.;Park, J.S.;Park, K.Y.;Choi, Y.J.;Yu, C.J.;Rho, Y.D.;Kwon, Y.W.
    • Korean Journal of Weed Science
    • /
    • v.16 no.4
    • /
    • pp.264-281
    • /
    • 1996
  • As a consequence of wide use of herbicides, Eleocharis kuroguwai Ohwi became a dorminant problem weed for rice cultivation in Korea. To understand the establishment of the weed, experiments on physio-ecological characteristics were carried out sprouting and occurrence, the results could be summarized as follows: Sprouting percentage remained 68 to 73% until the time of field emergence, indicating many of the them are still dormant. The proportion of the dormant tubers were greater for the smaller than the bigger tubers. Apical dominance was apparent in sprouting, with 84% of tuber sprouted from only one of the apical buds. Tubers sprouted from 2 or 3 buds were less than 20%, and were mostly from the bigger tubers. When the shoot growth was compared, by controlling the others, ones from apical and the next 3 buds showed similar vigorous growth, but the later ones showed poorer growth. For the longevity of tubers, deep soil storage appeared to be better than storage in temperature controlled room to 2~$3^{\circ}C$. Emergence of E. kuroguwai was better in clay soil than in sand, and the possible depth for emergence in clay soil appeared to be up to 21cm, but was 15cm in sand. When tubers were exposed to salt solutions before emergence tests, E. kuroguwai appeared to be much sensitive to salts than S.planiculmis. Among the tubers formed in previous year, 12.7% remained still viable until the end of next crop season, but with relatively strong dormancy. The first emergence was about 10 days after planting at ordinary cropping seasons, and the days to the maximum shoot number stage were 60~90 from planting. The duration was extended at early transplanting, and shoot number, leaves per shoot, and tubers developed per plant were also greater at early plantings. The 6th order offshoots were developing when E. kuroguwai was planted at early season. When planted at later seasons, generation and the number of offshoots was reduced planted at early season. When planted at later seasons, generation and the number of offshoots was reduced and the number of tubers, runner and rhizome lengths was also reduced.

  • PDF

Studies on Direct Sowing-Dry Paddy Rice Culture in the Middle Part of Korea (중부지방에 있어서의 수도건답직파재배 기술체계확립에 관한 시험연구)

  • Jai-Hyoun Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.7 no.1
    • /
    • pp.1-29
    • /
    • 1969
  • Experiments on rice concerning it s varieties, fertilization, seedling dates and herbicides have been conducted to determine the most desirable method of direct sowing cultivation on dry paddy field land in the middle part of Korea. The results obtained at the Office of Rural Development of Choongnam Province are as follows:. 1. Sixteen different derivatives from the main varieties of low land rice were cultivated on a dry paddy field by the direct sowing method; at the same time, a few varieties were tried adopting the common transplanting cultivation method. The yield and yield factors from these two groups were examined to give the following results: a) Compared to the common transplanting cultivation, the direct sowing method showed remarkably increased number of panicles while the number of flowers per panicle was shown to be significantly decreased. The maturing ratio was detected to be lowered. The yield horn them differed according to the different varieties : good yield was obtained from Hokwang while Norin #25 proved poor when compared with the common transplanting cultivation method. b) Among sixteen varieties tested, Sunsou, Norin #25, Jaigou, Hokwang, Palkueng and Gosi showed comparatively high yields, their yield being more than 325 kilograms per 10 Are, but Nampoong, Paldal, Nongkwang, Norin #29, Eunbangju #101 and Shiro gane showed less yield, their yield being less than 271 kilograms per 10 Are, the relations between the yield and the yield factors can be summarized as follows; Number of varieties and their rice yield. 1) The varieties which were great in the, number of panicles and high in yield=Jaigoun, Hokwang Palkueng and Gosi. 2) The varieties which were low in the number of panicles and high in yield=Sounsou and Norin #25. 3) The varieties which were great in the number of panicles and poor in yield=Eunbangju #101 and Sirogane. 4) The varieties which were poor in the number of panicles and poor in yield: Nampung, Paldal and Norin #29. Number of flowers per panicle and yield. 1) The varieties which were great in the number of flowers per panicle and high in yield: Sounsou, Norin #25 and Gosi. 2) The varieties which were poor in the number of flowers per panicle and high in yield ; Jaigoun, Hokwang and Palkueng. 3) The varieties which were great in the number of flowers per panicle and poor in yield: Paldal and Nampung. 4) The varieties which were poor in the number of flowers per panicle and poor in yield: Norin #29. Eunbangju #101 and Sirogane. Maturing ratio and yield. 1) The varieties which were high in the maturing ratio and high in yield: Jaigoun, Sounsou, Norin #25 and Palkueng. 2) The varieties which were low in the maturing ratio and high in yield: Hokwang and Gosi. 3) The varieties which were early maturing rat io and low in yield: Hokwang and Gosi. 4) The varieties which were late maturing ratio and poor in yield: Eunbangju #101, Nampungand Sirogane 1, 000 grain weight and yield. 1) The varieties which were heavy in 1, 000 grains weight and high in yield=Norin #25 and Hokwang. 2) The varieties which were light in 1, 000 grains weight and high in yield=Sounsou and Jaigoun. 3) The varieties which were heavy in 1, 000 grains weight and poor in yield=Nongkwang and Eunbanju. 4) The varieties which were light in 1, 000 grains weight and poor in yield=Norin #29 and Sirogane. 2. The experiment on fertilization showed that the most desirable amount to be given per 10 Are was 10 kilograms of Nitrogen, 5 kilograms of phosphate and 6 kilograms of potassium; and when the Nitrogen given exceeded 8 kilograms, its effect was better when given in amsll consecutive (split) amounts, while the maturing ratio and the number of the flowers per panicle increased when Nitrogen was given in large amount during the later stage of growth of rice. 3. The experiment on the date and amount of seedling showed that the tested variety, Sunsou gave the best results when planted on the days between 25 April and 10 May. Eight liters per 10 Are were preferable if planted early and 12 liters per 10 Are if planted late. The reason why the later planting gave a lower yield was that the number of flowers per panicle was fewer. 4. The experiment on the irrigation for rice with direct sowing cultivation immersed in water showed that it was the most satisfactory when irrigated on 25th June, 55 days after its seedling, its plot giving the best yield. The plots 10th June and 15th July showed just as good results. However, irrigated later, than 15th July it showed lower yields. 5. Compared to the yield of the plot controlled by the common method, the yield from the plots treated with chemical herbicide such as LOROX, TOK, PCP, SWEP, Mo-338 on dry condition soil seemed poorer, but significant difference was not found statistically. On the other hand in the case where chemical herbicides such as TOK, Mo-338, Stam F-34 or ORDRAM were used after irrigation, the yield from the ORDRAM and TOK treated plots did not show significant differences compared to the common hand weed controling method, but those treated with chemicals other than the above showed a lower yield.

  • PDF

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF

Adsorption and Metabolism of [14C]butachlor in Rice Plants Under Pot Cultivation ([14C]Butachlor의 벼에 대한 흡수 및 대사)

  • Kim, Ju-Hye;Kim, Jong-Hwan;Kim, Dae-Wook;Lee, Bong-Jae;Kim, Chansub;Ihm, Yangbin;Seo, Jong-Su
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.174-184
    • /
    • 2015
  • In the present study, the metabolism of [$^{14}C$]butachlor was investigated in rice plant according to the OECD test guideline No. 501. [$^{14}C$]Butachlor was treated as granule to paddy water by application of 1.5 kg ingredient (a.i.)/ha at the 3~4 leave stage of rice plant. At 85 days after treatment (DAT), samples of panicle, foliage, and roots were taken for radioactivity analysis. Upon harvest at 126 DAT, rice plants were separated into brown rice, husk, straw, and root parts. Amounts of total radioactivity absorbed by rice plant ranged from 8.6 to 9.8% of applied radioactivity (AR). Total radioactive residues (TRRs) of rice plant at 126 DAT was the highest as 4.0421 mg/kg (7.3% AR) in the straw followed by 1.4595 mg/kg (2.4% AR) in the root, 0.7257 mg/kg (0.1% AR) in the husk. The lowest level recording 0.1020 mg/kg (0.1% AR) was found in brown rice. Each part was extracted with various solvents and solvent/water mixtures. Greater than 70% of TRRs was readily extractable from foliage, panicle, husk and straw. Only 34.0% of the brown rice and 43% of root based on TRRs were extractable showing that the residues were completely assimilated in the plant tissue. The level of non-extractable radioactivity was ranged from 26.2 to 66.0% of TRRs. From this study, five tentative major metabolites (M1, M2, M3, M4 and M5) were observed in rice extracts. Among the metabolites, 2,6-diethylaniline assigned as M4 was identified in rice plant by comparing to retention time of reference standard. Un-metabolized butachlor was not detected in any fractions. In soil extracts, N-(butoxymethyl)-N-(2,6-diethyl phenyl)acetamide, 2,6-diethylaniline, M2, M3 and M5 were observed. And the concentration of butachlor was low level (ca. 0.03 mg/kg).

Studies on the Use of Radioisotope Tracer Technique to Investigate and Improve the Root Activities in Rice Plant (II) - Effect of Application of Several Kinds of Phosphorous Fertilizer - (방사성동위체(放射性同位體) 도입(導入)과 그 추적기술(追跡技術)에 의(依)한 수도근계(水稻根系) 활성상(活性相)의 해명(解明)과 개선(改善)에 관(關)한 연구(硏究) - 인산질(燐酸質) 비료(肥料)의 비종별(肥種別) 시용효과(施用效果)에 대(對)하여 - (제2보)(第2報))

  • Ahn, Hak-Soo;Chung, Hee-Don;Ahn, Jon-Sung;Ro, Jun-Chong;Kim, Kyu-Won;Shim, Sang-Chil
    • Applied Biological Chemistry
    • /
    • v.15 no.1
    • /
    • pp.85-92
    • /
    • 1972
  • The field experiment was performed to investigate the effects of various kinds of phosphorus fertilizers such as double superphosphate, fused magnesium phosphate and Simagcarin (both the Kyun-gi Chemical Co, products) on the physiological roles in development of root system, growth and yield compositions of rice plant. Radioactive phosphoric acid $(H_3\;^{32}PO_4)$ was applied to measure the root activity. 1. The number of total tillers was significantly increased in double superphosphate plots, but the rate of fruitful tillers was more numerous in the fused magnesium phosphate and the Simagcarin plots than that of the other plots. 2. The grain yield was much more obtained in the fused magnesium phosphate and Simagcarin plots (no significant difference were found between both of plots) than the double superphosphate and control plots. It seemed due to the increasing of seedbearing rate and number of fruitful tillers. 3. In double superphosphate plots, root system was mostly developed near topsoil areas, but fused magnesium phosphate and the Simagcarin plots, root system was uniformly distributed from topsoil to subsoil areas. 4. As the results of those experiments, fused magnesium phosphate and Simagcarin was demonstrated to be soil amendmentical materials rather than the phosphorus fertilizers, especially in low productive paddy soils which lack the special mineral nutritions.

  • PDF

Study of Nutrient Uptake and Physiological Characteristics of Rice by $^{15}N$ and Purified Si Fertilization Level in a Transplanted Pot Experiment (중질소와 순수규산 시비수준이 벼의 양분흡수 및 생리적 특성에 미치는 영향)

  • Cho Young-Son;Jeon Won-Tae;Park Chang-Young;Park Ki-Do;Kang Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.408-419
    • /
    • 2006
  • A pot experiment was conducted for two years to evaluate the effects of purified Si fertilization combined with $^{15}N$ on the nutrient uptake, plant growth characteristics, and photosynthetic characteristics of rice in water melon cultivated soil. In 2002, plant height was positively affected at 25 DAT (Day After Transplanting) by Si fertilization in 100%N treatment. However, in 2003, plant height at 25 DAT was negatively affected by Si fertilization in low N level but it was reversed in high N level with initial increase of plant height. Tiller number per pot was positively affected by N and Si fertilization level, especially for high N fertilized treatment. Leaf color was positively affected by Si fertilizatlon in no N fertilized pots, however, Si was not effected in 50%N and 100%N fertilized treatments. N harvest index (NHI) increased with increased Si fertilization in no N plots, however it decreased with increasing of N fertilization level. Nitrogen use efficiency (NUE) decreased with increasing of fertilized N but Si fertilization increased NUE in 50%N plots, however, it was not different by the Si fertilization level in 100%N plots. In 50%N+200%Si plots, NUE was greatest with 130 and shoot N content was $16.2g-N/m^{2}$. N content ($g/m^{2}$) in rice plant increased with increasing Si fertilization in no N plots at panicle initiation stage, 50 and 100%N plots at heading stage and all N treatment at harvesting time. This was mostly more efficient in late growth stage than early growth stage. The concentration (%) of P and K increased with increasing N fertilization level at heading and harvesting but it was not significantly different by the Si fertilization treatment except a little decreasing with increasing Si fertilization level at heading. Potassium content was also not significantly related with N fertilization level except increasing with Si fertilization level at panicle initiation stage. Plant Ca content (%) decreased with increasing of Si fertilization at heading stage and Si fertilization increased Ca content at panicle initiation stage and heading stage and it increased with increasing of Si fertilization level. Photosynthetic activity was not directly related with Si fertilization amount, however, Fluorescent factors, Fv'/Fm' and PsII, were positively affected by Si fertilization level. In conclusion, N fertilization in Si 200% fertilized condition should be reduced by about 50% level of recommended N fertilization for rice cropping in green-house water-melon cultivated paddy field. However, improvement of Ps by Si fertilization could not be attributed to Ps activity in the same leaf area but because of increased total leaf area per pot improved fluorescent characteristics.

Application Amount of Anaerobic Digestion Waste Water from Methane Fermentation of Pig Manure on Rice (벼에 대한 돈분뇨 혐기성 소화액비의 시용적량 구명)

  • Lim, Dong-Kyu;Park, Woo-Kyun;Kwon, Soon-Ik;Nam, Jae-Jak;Lee, Sang-Beom
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.248-254
    • /
    • 2002
  • This study was carried out to evaluate the proper application amount of anaerobic digestion waste water and the environmental influence on rice. The waste water collected after methane fermentation process of pig manure was used as a liquid manure. Liquid manure 100%+chemical fertilizer 30%(LM 100%+CF 30) treatment was the most favorable at all growth stages of rice. The LM 100%+CF 30% treatment was applied to 100% amount of liquid manure which was correspond to the same amount of nitrogen for the standard application amount on rice, with adding 30% amount of chemical fertilizer(urea) at tillering stage. The yields of rice in the treatments of 100%(LM 100%) and 150% amount(LM 150%) of liquid manure were similar or a little higher than NPK treatment but LM 100%+CF 30% treatment was less than the NPK treatment due to the increase of straw weight and plant lodging. In periodic changes of the $NH_4-N$ and $NO_3-N$ contents, the LM 70%+CF 30% treatment in paddy soil was the highest in all treatments. The NPK and the LM 100% treatments in irrigation water quality were higher than other treatments. In infiltration water quality, $NH_4-N$ content was leached out much in the LM 150% treatment and $NO_3-N$ content was in the LM 100%+CF 30% treatment. The proper application amount of anaerobic digestion waste water as a liquid manure must be to analyse the nitrogen content of the waste water and to apply the same amount of nitrogen for the standard application amount on rice.

Application Level of Anaerobic Digestion Waste Water from Methane Fermentation of Pig Manure on Rice (벼에 대한 돈분뇨 혐기성 소화액비의 시용기준 연구)

  • Lim, Dong-Kyu;Park, Woo-Kyun;Kwon, Soon-Ik;Nam, Jae-Jak;Park, Baeg-Kyun;Kim, Seung-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2002
  • This study was conducted to evaluate the effect of the proper application level of anaerobic digestion waste water on rice. The waste water was from methane fermentation of pig manure to use as a liquid manure. The mixture treatment of 70% liquid manure and 30% chemical fertilizer (LM 70%+CF 30%) and 100% liquid manure (LM 100%) treatment were higher number of tiller than other treatments at the both tillering and heading stages of rice. The yields of LM 70%+CF 30% and LM 100% treatments were a little higher than that of NPK treatment, but the mixture treatment of 50% liquid manure and 50% chemical fertilizer (LM 50%+CF 50%) was a little lower yield than NPK treatment. The periodic changes of the $NH_4-N$ and $NO_3-N$ contents of the NPK and the LM 50%+CF 50% treatments in paddy soil were a little higher than those of other treatments at the early stage of rice. The $NH_4-N$ contents of NPK and the LM 50%+CF 50% treatments in irrigation water quality were higher than those of other treatments, however there was no difference in $NO_3-N$ content among the treatments. The $NH_4-N$ and $NO_3-N$ contents of non fertilizer treatment in infiltration water quality were leached a little higher than those of other treatments. It may be due to poor growth of rice following to reduce the nutrient uptake by rice and to increase relatively the nutrient leaching to the ground water. The proper application level of anaerobic digestion waste water as a liquid manure could be suggested to apply LM 70%+CF 30%. All treatments were the same amount of nitrogen content for the standard application amount on rice.