• Title/Summary/Keyword: packing optimization system

Search Result 18, Processing Time 0.024 seconds

Development of a Packing Optimization System for the CKD of Electric Home Appliances Industry (가전업의 CKD업무를 위한 Packing Optimization System 개발)

  • 백종건;김정욱;전수남;임종배;오차재;윤기철;황종원;장창식
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.17-20
    • /
    • 2000
  • 가전업의 CKD(Complete Knock Down)업무는 해외의 바이어나 현지공장에 가전제품을 구성하는 부품/반제품들을 개별 포장하여 수출하는 물류업무이다. 이러한 CKD 업무는 가격경쟁이 치열한 부분으로 경쟁력 강화를 위해 물류비의 절감이 요구되고 있다. 특히 CKD 업무의 경쟁력 강화를 위해서는 포장품질과 적재율 향상을 위한 포장/적재의 최적화가 이루어져야 하며, 이를 지원하는 Packing Optimization System 의 구축이 절실히 필요하다. 본 논문에서는 가전업 CKD의 업무특징과 업무환경의 변화에 대해 기술하였으며, 환경변화에 대한 대응방법으로 가전업 CKD 업무를 위한 Packing Optimization System 의 주요 기능과 업무 프로세스를 제시하였다. 그리고, 시뮬레이션 방법을 이용한 Packing Optimization system의 구현 사례를 예시하였다.

  • PDF

Intelligent 3D packing using a grouping algorithm for automotive container engineering

  • Joung, Youn-Kyoung;Noh, Sang Do
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.140-151
    • /
    • 2014
  • Storing, and the loading and unloading of materials at production sites in the manufacturing sector for mass production is a critical problem that affects various aspects: the layout of the factory, line-side space, logistics, workers' work paths and ease of work, automatic procurement of components, and transfer and supply. Traditionally, the nesting problem has been an issue to improve the efficiency of raw materials; further, research into mainly 2D optimization has progressed. Also, recently, research into the expanded usage of 3D models to implement packing optimization has been actively carried out. Nevertheless, packing algorithms using 3D models are not widely used in practice, due to the large decrease in efficiency, owing to the complexity and excessive computational time. In this paper, the problem of efficiently loading and unloading freeform 3D objects into a given container has been solved, by considering the 3D form, ease of loading and unloading, and packing density. For this reason, a Group Packing Approach for workers has been developed, by using analyzed truck packing work patterns and Group Technology, which is to enhance the efficiency of storage in the manufacturing sector. Also, an algorithm for 3D packing has been developed, and implemented in a commercial 3D CAD modeling system. The 3D packing method consists of a grouping algorithm, a sequencing algorithm, an orientating algorithm, and a loading algorithm. These algorithms concern the respective aspects: the packing order, orientation decisions of parts, collision checking among parts and processing, position decisions of parts, efficiency verification, and loading and unloading simulation. Storage optimization and examination of the ease of loading and unloading are possible, and various kinds of engineering analysis, such as work performance analysis, are facilitated through the intelligent 3D packing method developed in this paper, by using the results of the 3D model.

CAE Analysis and Optimization of Injection Molding for a Mobile Phone Cover (휴대폰 커버 사출성형의 CAE 해석 및 최적화)

  • Park, Ki-Yoon;Kim, Hyeon-Seong;Kang, Jin-Hyun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.60-65
    • /
    • 2012
  • This paper deals with an CAE analysis and optimization of injection molding for a mobile phone cover. Two design goals are established in the optimization; one is to switch over the feed system from cold runner to hot runner for the purpose of reducing material costs, and the other is to minimize the warpage in order to improve product quality. By the full-factorial experiments for design parameters, we showed that the cold runner design could be changed to the hot runner design by replacing the current resin with a new resin of higher fluidity. In addition, we could significantly reduce the warpage of the cover product under the hot runner system by optimizing packing pressure and packing time.

Optimization of the Television Packing System Using Equivalent Static Loads (등가정하중법을 이용한 텔레비전 포장재의 구조최적설계)

  • Lee, Youngmyung;Jung, Ui-Jin;Park, Gyung-Jin;Han, In-Sik;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

Optimal Design of Mold Layout and Packing Pressure for Automobile TCU Connector Cover Based on Injection Molding Analysis and Desirability Function Method (사출성형 해석과 선호함수법에 기초한 자동차 TCU 커넥터 커버의 금형 레이아웃 및 보압의 최적 설계)

  • Park, Jong-Cheon;Yu, Man-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, the optimal design of the multi-cavity mold layout and packing pressure for the automobile TCU connector cover is determined based on the injection molding analysis and the desirability function method for multi-characteristic optimization. The design characteristics to be optimized are the warpage and sink marks of the product, the scrap of the feed system, and the clamping force. The optimal design is determined by performing injection molding analysis and desirability analysis for design alternatives defined by a complete combination of five mold layouts and six-level packing pressure. The optimal design shows that the desirability values for individual characteristics are quite high and balanced, and the resulting values of individual characteristics are satisfactorily low.

Development of Automatic Packing System of One Station for Fasteners(I): Optimization Design of Packing Mechanism (원 스테이션 파스너 자동포장기 개발(I): 패킹 메커니즘의 최적설계)

  • Kim, Yong-Seok;Jeong, Chan-Se;Yang, Soon-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.335-341
    • /
    • 2011
  • In this paper, we proposed an automatic packing mechanism of one station concept for fastener objects where the continuous work is performed in a finite space. The proposed packing mechanism is composed of supporting frame, feeding supply, air shower device, clamping/opening device, batch charging device, sealing/cutting device and supply adjusting device. And, these mechanisms have been modularized through mechanical, dynamical, structural and fluid optimized design using the SMO(SimDesigner Motion) analysis module. Also, the virtual prototype was carried out using the 3-D CAD program. The packing process is consisted performed in the order of feeding, clamping, bottom sealing, cutting, opening, object charging, closing and the upper sealing. And the time of these cycles were designed to be completed in 15-20 seconds. This packing mechanism will be created as a prototype in the near future. In addition, it will be applied to the production scenes after going through a field test for the validation of performance.

A Study on Injection Condition Optimization and Deformation Improvement using Taguchi Design of Experiments (다구찌 실험계획법을 이용한 사출 조건 최적화와 변형 개선에 대한 연구)

  • Young-Tae Yu;Sung-Min Mun;Sung-Young Jun;Kyoung-A Kim
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.62-69
    • /
    • 2023
  • In this study, we conducted a study on the optimization of injection molding conditions to minimize deformation of plastic product. The charging management system housing of the vehicle was selected as the research subject. Melting temperature, cooling temperature, packing time, and packing pressure were selected as the main factors expected to affect the deformation of molded products. Each main factor was divided into 5 levels. Optimization of injection molding conditions to minimize deformation was performed using the Taguchi Method. We performed an analysis of variance (ANOVA) to identify significant factors affecting the deformation of plastic product. In order to select injection molding conditions that minimize deformation of plastic products, injection molding analysis was additionally performed for insignificant factors. We then compared the deformation of the molded part before and after optimization. As a result of comparing the injection analysis results of the basic conditions and the injection analysis results of the optimal conditions, it was confirmed that the amount of deformation after optimization was improved by about 10.9%.

Space Optimization for Warehousing Problem: A Methodology for Decision Support System

  • Murthy, A.L.N.
    • Management Science and Financial Engineering
    • /
    • v.18 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • This article presents a way of tackling a special class of space optimization problems that arise in a number of practical applications in industry and elsewhere. It presents an elegant solution to a problem that was considered by (Das, 2005) in optimizing storage space in warehouse of a footwear manufacturing company. In (Das, 2005), the problem was formulated as a nonlinear programming problem. In this article, it is shown that the problem can be formulated as a generalized transportation problem which is a special case of generalized network flow problems. Further, an elegant scheme is devised to handle the dynamic situation of warehousing problem which can be easily translated into a decision support system for the warehouse management system. Also, the article points out certain obscurities and gaps in (Das, 2005).

Optimization of Multiple Quality Characteristics for Polyether Ether Ketone Injection Molding Process

  • Kuo Chung-Feng Jeffrey;Su Te-Li
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.404-413
    • /
    • 2006
  • This study examines multiple quality optimization of the injection molding for Polyether Ether Ketone (PEEK). It also looks into the dimensional deviation and strength of screws that are reduced and improved for the molding quality, respectively. This study applies the Taguchi method to cut down on the number of experiments and combines grey relational analysis to determine the optimal processing parameters for multiple quality characteristics. The quality characteristics of this experiment are the screws' outer diameter, tensile strength and twisting strength. First, one should determine the processing parameters that may affect the injection molding with the $L_{18}(2^1{\times}3^7)$ orthogonal, including mold temperature, pre-plasticity amount, injection pressure, injection speed, screw speed, packing pressure, packing time and cooling time. Then, the grey relational analysis, whose response table and response graph indicate the optimum processing parameters for multiple quality characteristics, is applied to resolve this drawback. The Taguchi method only takes a single quality characteristic into consideration. Finally, a processing parameter prediction system is established by using the back-propagation neural network. The percentage errors all fall within 2%, between the predicted values and the target values. This reveals that the prediction system established in this study produces excellent results.

Flexible Formation Algorithm for Multiple UAV Using the Packing (패킹을 이용한 다수 무인기의 유동적 대형 형성 알고리즘)

  • Kim, Hyo-Jung;Kim, Jeong-Hun;Kim, Moon-Jung;Ryoo, Chang-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.211-216
    • /
    • 2021
  • Multiple UAV System has been used for various purposes such as reconnaissance, networking and aerial photography. In such systems, it is essential to form and maintain the formation of multiple UAVs. This paper proposes the algorithm that produces an autonomous distributed control for each vehicle for a flexible formation. This command is a repulsive force in the form of the second-order system by the nearest UAV or mission area. The algorithm uses the relative position/speed through sensing and communication for calculating the command without external intervention. The command allows each UAV to follow the reference distance and fill the mission area as densely as possible without overlapping. We determine the reference distance via optimization technique solving the packing problem. The mission area comprises the desired formation outline and can be set flexibly depending on the mission. Numerical simulation is carried out to verify the performance of the proposed algorithm under a complex and flexible environment. The formation is formed in 26.94 seconds and has a packing density of 71.91%.