Optimization of Multiple Quality Characteristics for Polyether Ether Ketone Injection Molding Process

  • Kuo Chung-Feng Jeffrey (Department of Polymer Engineering, National Taiwan University of Science and Technology) ;
  • Su Te-Li (Department of Polymer Engineering, National Taiwan University of Science and Technology)
  • Published : 2006.12.30

Abstract

This study examines multiple quality optimization of the injection molding for Polyether Ether Ketone (PEEK). It also looks into the dimensional deviation and strength of screws that are reduced and improved for the molding quality, respectively. This study applies the Taguchi method to cut down on the number of experiments and combines grey relational analysis to determine the optimal processing parameters for multiple quality characteristics. The quality characteristics of this experiment are the screws' outer diameter, tensile strength and twisting strength. First, one should determine the processing parameters that may affect the injection molding with the $L_{18}(2^1{\times}3^7)$ orthogonal, including mold temperature, pre-plasticity amount, injection pressure, injection speed, screw speed, packing pressure, packing time and cooling time. Then, the grey relational analysis, whose response table and response graph indicate the optimum processing parameters for multiple quality characteristics, is applied to resolve this drawback. The Taguchi method only takes a single quality characteristic into consideration. Finally, a processing parameter prediction system is established by using the back-propagation neural network. The percentage errors all fall within 2%, between the predicted values and the target values. This reveals that the prediction system established in this study produces excellent results.

Keywords

References

  1. W. H. Bonner, U.S. Patent, 3065205 (1962)
  2. T. E. Attwood, P. C. Dawson, J. L. Freeman, L. R. J. Hoy, J. B. Rose, and P. A. Staniland, Polymer, 22, 1096 (1981) https://doi.org/10.1016/0032-3861(81)90299-8
  3. S. Sanchagrin, Polym. Eng. Sci., 23, 431 (1983) https://doi.org/10.1002/pen.760230804
  4. A. Siegmann, A. Buchman, and S. Kenic, Polym. Eng. Sci., 27, 1069 (1987) https://doi.org/10.1002/pen.760271407
  5. A. Siegmann, A. Buchman, and S. Kenic, Polym. Eng. Sci., 22, 560 (1982) https://doi.org/10.1002/pen.760220908
  6. H. T. Pham, C. P. Bosnyak, and K. Sehanobish, Polym. Eng. Sci., 33, 1634 (1993) https://doi.org/10.1002/pen.760332408
  7. K. M. Jansen, D. J. V. Dijk, and M. H. Husselman, Polym. Eng. Sci., 38, 838 (1998) https://doi.org/10.1002/pen.10249
  8. D. S. Choi and Y. T. Im, Composite Structures, 47, 655 (1999) https://doi.org/10.1016/S0263-8223(00)00045-3
  9. T. C. Chang and E. Faison III, Polym. Eng. Sci., 41, 703 (2001) https://doi.org/10.1002/pen.10766
  10. C. L. Lin, J. L. Lin, and J. T. Huang, The Journal of Grey System, 4, 359 (2001)
  11. B. F. Yousef, G. K. Knopf, E. V. Bordatchve, and S. K. Nikumb, Int. J. Adv. Manuf. Technol., 22, 41 (2003) https://doi.org/10.1007/s00170-002-1441-9
  12. S. S. Madaeni and S. Koocheki, Chem. Eng. J., 119, 37 (2006) https://doi.org/10.1016/j.cej.2006.03.002
  13. P.J. Kelly, R. D. Arnell, M. D. Hudson, A. E. J. Wilson, and G. Jones, Vacuum, 61, 61 (2001) https://doi.org/10.1016/S0042-207X(00)00451-6
  14. J. M. Liu, P. Y. Lu, and W. K. Weng, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 85, 209 (2001) https://doi.org/10.1016/S0921-5107(01)00583-9
  15. C.-F. J. Kuo and T. L. Su, Text. Res. J., 73, 461 (2003) https://doi.org/10.1177/004051750307300515
  16. X. Zhang, S. Zhang, and Z. He, J. Cryst. Growth, 264, 409 (2004) https://doi.org/10.1016/j.jcrysgro.2003.12.038
  17. D. Guo, Y. Wang, C. Nan, L. Li, and J. Xia, Sens. Actuator A-Phys., 102, 93 (2002) https://doi.org/10.1016/S0924-4247(02)00381-3
  18. A. J. Greaves, Dyes Pigment., 46,101 (2000) https://doi.org/10.1016/S0143-7208(00)00041-3