• Title/Summary/Keyword: packing method

Search Result 497, Processing Time 0.024 seconds

Analysis of Packing Procedure Using Penalty Formulation in Precision Injection Molding (정밀 사출성형에서의 Penalty Formulation을 이용한 Packing 과정 해석)

  • Kim Sun-Kyung;Kim Seung-Mo;Choi Doo-Sun;Lee Woo-Il;Kang Sung-Yong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.105-110
    • /
    • 2005
  • The penalty method has been widely applied to analyses of incompressible fluid flow. However, we have not yet found any prior studies that employed penalty method to analyze compressible fluid flow. In this study, with an eye on the apparent similarity between the slight compressible formulation and the penalty formulation, we have proposed a modified approximate approach that can analyze compressible packing process using the penalty parameter, which is an improvement on an earlier formulation (KSME, 2004B). Based on the assumption of the isothermal flow, a set of reference solutions was obtained to verify the validity of the proposed scheme. Furthermore, we have applied the proposed scheme to the analysis of the packing process of different cases.

  • PDF

A Basic Study on Storage of Leaf, Stem and Root in Angelica acutiloba Kitag

  • Choi Seong-Kyu
    • Korean Journal of Plant Resources
    • /
    • v.19 no.3
    • /
    • pp.436-439
    • /
    • 2006
  • This study was carried out to obtain basic information for optimum storage method of leaf, stem and root of Angelica acutiloba Radix, which is being utilized as major cultivated herbal medicine materials, root of Angelica acutiloba was stored for 3 months in different packing materials and sealing methods, such as punched packing, sealing and vacuum packing. The results are summarized as follows. The loss in weight as influenced by packing materials and sealing degree was the lowest at vacuum packing and complete sealing condition with transparent polyethylene film. The ratio of root rot during the storage period was not significantly different between polyethylene films, but it was significantly different between sealing conditions. Therefore, vacuum packing and complete sealing with polyethylene film are desirable storage condition for Angelica acutiloba Radix.

Mix design and Performance Rvaluation of Ultra-high Performance Concrete based on Packing Model (패킹모델 이용한 초고성능 콘크리트 배합설계 및 성능 평가)

  • Yan, Si-Rui;Jang, Jong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.94-95
    • /
    • 2020
  • This paper introduces the mix design and performance evaluation of Ultra-High Performance Concrete (UHPC). The concrete mixture is designed to achieve a densely compacted cementitious matrix via the modified Andreasen & Andersen particle packing model. The compressive strengths of UHPC designed by this method reached 154MPa. The relationship between packing theory and compressive strength of UHPC is discussed in this paper.

  • PDF

Effects of Packing Methods on Storage and Microbiology of Chilled Chicken Breast and Thigh Meats (냉장방법과 포장방법이 냉장계육의 저장성 및 미생물의 증식에 미치는 영향)

  • 박구부;송또준;이상진;김용곤;박태선;신택순;이정일
    • Korean Journal of Poultry Science
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 1997
  • This experiment was carried out to investigate the effects on shelf-life of chilling and packing methods of cold chicken breast and thigh meats. Deboned chicken breast and thigh meats were packed by either vacuum or atmosphere packing method, and stored at -2˚C for 1, 3, 7, 11, 15, and 20 days. The thiobarbituric acid(TBA) values of all treatments were significantly increased as the storage period extended(P<0.05), however, TBA values of all treatments were remark-ably decreased at 15 days. TBA values of immersion chilled and vacuum-packed thigh meats were increased, but no difference between atmosphere and vacuum-packing methods was found. The volatile basic nitrogen(VBN) values at 1 day of storage were low, but they were increased as the storage period extended. The VBN values at 20 days after storage were from 12.25~19.28 mg %. Total bacterial counts tended to increase in all treatments, however, no significant difference was found in any treatment. Total plate counts of breast meat were higher than those of thigh meat as the storage period extended.

  • PDF

Pressure-infiltration of Fe3O4-nanoparticles Into Porous Silicon and a Packing Density Monitoring Technique (다공성실리콘내 Fe3O4 나노입자의 압력침착과 채움밀도 모니터링 방법)

  • Lee, Joo Hyeon;Lee, Jae Joon;Lee, Ki Won
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.385-391
    • /
    • 2015
  • In this paper, we propose a new method to infiltrate $Fe_3O_4$-nanoparticles into a porous silicon film and a monitoring technique to detect packing density of nanoparticles within the film. Recently, research to use porous silicon as a drug carrier or a new functional sensor material by infiltrating $Fe_3O_4$-nanoparticles has been extensively performed. However, it is still necessary to enhance the packing density and to develop a monitoring technique to detect the packing density in real time. In this light, we forcibly injected a nanoparticle solution into a rugate-structured free-standing porous silicon (FPS) film by applying a pressure difference between the two sides of the film. We found that the packing density by the pressure-infiltration method proposed in this paper is enhanced, relative to that by the previous diffusion method. Moreover, a continuous shift in wavelength of the rugate reflectance peak measured from the film surface was observed while the nanoparticle solution was being injected. By exploiting this phenomenon, we could qualitatively monitor the packing density of $Fe_3O_4$-nanoparticles within the FPS film with the injection volume of the nanoparticle solution.

Small- and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.315-328
    • /
    • 2019
  • This paper presents an investigation on bearing capacity, load-settlement behavior and safety factor of rock-soil slopes reinforced using geogrid-box method (GBM). To this end, small-scale laboratory studies were carried out to study the load-settlement response of a circular footing resting on unreinforced and reinforced rock-soil slopes. Several parameters including unit weight of rock-soil materials (loose- and dense-packing modes), slope height, location of footing relative to the slope crest, and geogrid tensile strength were studied. A series of finite element analysis were conducted using ABAQUS software to predict the bearing capacity behavior of slopes. Limit equilibrium and finite element analysis were also performed using commercially available software SLIDE and ABAQUS, respectively to calculate the safety factor. It was found that stabilization of rock-soil slopes using GBM significantly improves the bearing capacity and settlement behavior of slopes. It was established that, the displacement contours in the dense-packing mode distribute in a broader and deeper area as compared with the loose-packing mode, which results in higher ultimate bearing load. Moreover, it was found that in the loose-packing mode an increase in the vertical pressure load is accompanied with an increase in the soil settlement, while in the dense-packing mode the load-settlement curves show a pronounced peak. Comparison of bearing capacity ratios for the dense- and loose-packing modes demonstrated that the maximum benefit of GBM is achieved for rock-soil slopes in loose-packing mode. It was also found that by increasing the slope height, both the initial stiffness and the bearing load decreases. The results indicated a significant increase in the ultimate bearing load as the distance of the footing to the slope crest increases. For all the cases, a good agreement between the laboratory and numerical results was observed.

Effect of Packing Condition of Polyethylene film on Storage of a Major Herbal Medicine Material, Anemarrhena Rhizome

  • Choi, Seong-Kyu
    • Plant Resources
    • /
    • v.6 no.1
    • /
    • pp.53-56
    • /
    • 2003
  • To develop optimal storage method of root of Anemarrhena Rhizome, which has been grown as major cultural herbal medicine material, root of Anemarrhena Rhizome was stored for 10 months with different packing materials and sealing methods. The loss in dry weight as influenced by packing materials and sealing methods was the lowest at vacuum packing and followed by complete sealing methods with transparent polyethylene film. The rot ratio of root during the storage period was not significantly different among packing materials but was significantly different among sealing conditions. Conclusively vacuum packing and complete sealing with polyethylene film appears to be optimal for storage of Anemarrhena Rhizome.

  • PDF

A Numerical Analysis Study on the Characteristics for Packing Design of Cryogenic Gate Valve (초저온 게이트 밸브용 패킹의 수치해석 연구)

  • Kim, Si-Pom;Jeon, Rock-Won;Hwang, Il-Ju;Lee, Jae-Hun;Kang, Dae-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.160-165
    • /
    • 2012
  • The packing, among the components comprising the gate valve, is used to sustain the air-tightness and the study on change of shape or pattern has been carried out to maximize the functions, but the study on changing the location or the size of the packing in a bid to prevent the freezing has rarely been implemented. Thus, This study is intended to evaluate the thermal strain of packing by heat transfer from territory of extremely low temperature as well as the temperature distribution to the upper part of the packing using numerical analysis method.

Packing of Alumina Particles in 3D Preform of Mullite Fiber by Slurry Pressure-Infiltration (슬러리 가압함침에 의한 3D Mullite 섬유 Preform의 알루미나 입자 충전)

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.528-532
    • /
    • 2013
  • Well-dispersed slurries of submicron-sized alumina powders were pressure-infiltrated in 3D preforms of mullite fibers and the effects of the particle size and infiltration pressure on the particle packing characteristics were investigated. Infiltration without pressure showed that the packing density increased as the particle size decreased due to the reduction of the friction between the particles and the fibers. The infiltrated preforms contained large pores in the large voids between the fiber tows and small pores in the narrow voids between the individual fibers. Pressure infiltration resulted in a packing density of 77% regardless of the particle size or the infiltration pressure(210 ~ 620 kPa). Pressure infiltration shortened the infiltration time and eliminated the large pores in preforms infiltrated with the slurries of smaller particles. The slurry pressure-infiltration process is thus an efficient method for the packing of matrix materials in various preforms.

Preparation of Alumina Ceramics by Pressureless Powder Packing Forming Method (II) Characterization of Sintered Body Fabricated by Pressureless Powder Packing Forming Method (무가압 분말 충전 성형법을 이용한 알루미나 세라믹스의 제조 (II) 무가압 분말 충전 성형법에 의해 제조된 소결체 특성 관찰)

  • 박정형;성재석
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.113-119
    • /
    • 1995
  • The green body was fabricated by a new forming method, pressureless powder packaing forming method, and the characteristics of sintered specimen were investigated. It was found that alumina ceramics prepared by the present method showed porous structure with narrow pore size distribution, and in case of abrasive powder sintered body, compared with dry-pressed specimen, had the nearly same density. Especially, the specimen prepared with spray-dried granules showed the characteristic that granules were not either deformed or fractured during forming and sintering process. Therefore, it was found that this new forming method was effective method in fabrication of porous ceramics on account of easy control of porosity and pore size and its high thermal stability.

  • PDF