• Title/Summary/Keyword: packet loss

Search Result 975, Processing Time 0.03 seconds

Performance evaluation of Multicast in an Integrated Services Packet Network (종합 서비스 패킷망에서의 멀티캐스트의 성능 평가)

  • Lee, Wang-Bong;Kim, Young-Han
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.9-19
    • /
    • 1999
  • An increase of the number of the real time applications and the Internet hosts make the Internet architecture changed. Current Internet architecture has some problems to process the real time traffics. To solve these problem, a new Internet architecture is proposed as the Integrated Service model. In the current Internet, as multicast protocols, the QoS multicast and the best-effort multicast have been studied in their separate network environments. But, the Integrated Service Packet Network is a heterogeneous network composed of the QoS delivery domain and the best-effort delivery domain. Thus, those separated multicast protocols have limitations in an ISPN. In this paper, we propose a multicast protocol for the ISPN with the QoS and the best-effort multicasting, and analyze the performance of this protocol. As a result, we find that the packet losses are same for hybrid multicast and best-effort multicast when the bandwidth is sufficient. But, if there exist some background traffics, the hybrid multicast has less packet loss than of the best-effort multicast.

  • PDF

Packet Scheduling Algorithm for QoS Enhancement in WBAN (WBAN 환경에서 QoS 향상을 위한 패킷 스케줄링 알고리즘)

  • Kim, JiWon;Kim, Jinhyuk;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.99-108
    • /
    • 2014
  • WBAN(Wireless Body Area Network) is network to support medical and non-medical services. It is susceptible to loss and delay of data. WBAN is required to satisfy many kinds of demands such as a variety of data rate and a data priority for providing various service. In this paper scheduling algorithm, considering a data priority and transmission delay time, is proposed to improve service quality of WBAN. The proposed algorithm operates by allocating a channel to a flow with longer transmission delay. When a packet, in a queue of herb, is left within a certain period, the packet is assigned a channel and transmitted according to a data priority. Through the comparison with other existing scheduling algorithms, it is confirmed that QoS is improved due to higher arrival probability of medical data and less delay time in the proposed algorithm.

IDS Performance on MANET with Packet Aggregation Transmissions (패킷취합전송이 있는 MANET에서 IDS 성능)

  • Kim, Young-Dong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.6
    • /
    • pp.695-701
    • /
    • 2014
  • Blackhole attacks having a unauthorized change of routing data will cause critical effects for transmission performance. The transmission performance will be improved to the a certain level by using or having IDS(Intrusion Detection System)/IPS(Intrusion Prevention System) as countermeasures to blackhole attacks. In this papar, the effects of IDS to ene-to-end performance of packet aggregation transmission are analyzed on MANET(Mobile Ad-hoc Network) with IDS under blackhole attacks. MANET simulator based on NS-2 is used to analyze performance parameters as MOS, connection ratio, delay and packet loss rate as standard performance parameters, an another performance factor which is suggested in this paper. VoIP(Voice over Internet Protocol) traffics, one of voice services, is used for performance analysis. A suggestion for IDS implementation on MANET with packet aggregations under blackhole is shown as one of results.

Analysis of IEEE 802.11 Broadcast for Reliable Wi-Fi Broadcast (안정적 Wi-Fi 방송 서비스를 위한 무선 랜 전송 특성 분석)

  • Jung, Jae-Hyoun;Kim, Dong-Hyoun;Kim, Jong-Deok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.954-961
    • /
    • 2011
  • To apply Wi-Fi technique to the Broadcast field, we have to study features of IEEE 802.11 Broadcast packet. IEEE 802.11 Broadcast technique cannot guarantee successful packet delivery than IEEE 802.11 Unicast. A promising solution to this problem is the use of FEC(Forward Error Correction) mechanisms. However, the adjustment of the FEC redundancy rate is not a trivial issue due to the dynamic wireless environment. In order to explore the above issues we conducted an experimental study of the packet loss behavior of the IEEE 802.11g protocol. In order to study, we implemented a broadcast test bed. Based on the experimental results, we provide guidelines on wireless lan parameters(packet size, transmission rate(11g), background traffic). From this experimental study, we provide FEC redundancy rate.

Performance Analysis of Cellular If Using Combined Cache and Alternative Handoff Method for Realtime Data Transmission (실시간 데이터를 지원하는 통합 캐시 및 차별화된 핸드오프를 이용한 셀룰러 IP의 성능분석)

  • Seo, Jeong-Hwa;Han, Tae-Young;Kim, Nam
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.2
    • /
    • pp.65-72
    • /
    • 2003
  • In this paper, the new scheme using a Combined Cache(CC) that combing the Paging and Routing Cache(PRC) and an alternative handoff method according to the type of data transmission for achieving the efficient realtime communication. The PRC and quasi-soft handoff method reduce the path duplication. But they increase the network traffic load because of the handoff state packet of Mobile Host(MH). Moreover the use the same handoff method without differentiating the type of transmission data. Those problems are solved by operating U with a semi-soft handoff method for realtime data transmission and with a hard handoff method for non-realtime data transmission. As a result or simulation a better performance is obtained because of the reduction of the number of control packet in case that the number of cells are below 20. And the packet arrival time and loss of packet decreased significantly for realtime data transmission.

  • PDF

SACK-SNOOP Protocol for Wireless TCP Performance Improvement (무선 TCP 성능 향상을 위한 SACK-SNOOP 프로토콜)

  • Ahn, Chi-Hyun;Kim, Hyung-Chul;Woo, Jong-Jung;Kim, Jang-Hyung;Lee, Dae-Young;Jun, Kye-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.392-401
    • /
    • 2007
  • Wireless network has high BER characteristic because of path loss, fading, noise and interference. Many packet losses occur without any congestion in wireless network. Therefore, many wireless TCP algorithms have been proposed. SNOOP, one of wireless TCP algorithms, hides packet losses for Fixed Host and retransmits lost packets in wireless network. However, SNOOP has a weakness for bust errors in wireless network. This paper proposes the SACK-SNOOP to improve TCP performance based on SNOOP and Freeze-TCP that use ZWA messages in wireless network. This message makes FH stop sending packets to MH. BS could retransmit error packets to MH for this time. SACK-SNOOP use improved Selective ACK, thereby reducing the number of packet sequences according to error environment. This method reduces the processing time for generation, transmission, analysis of ACK. This time gain is enough to retransmit local burst errors in wireless link. Furthermore, SACK-SNOOP can manage the retransmitted error by extending delay time to FH. The simulation shows that our proposed protocol is more effective for packet losses in wireless networks.

End-to-end Delay Guarantee in IEEE 802.1 TSN with Non-work conserving scheduler (비작업보존 스케줄러를 갖는 IEEE 802.1 TSN에서 단대단 지연시간 보장)

  • Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.121-126
    • /
    • 2018
  • IEEE 802.1 TSN TG is developing standards for end-to-end delay bounds and zero packet loss based on Ethernet technology. We focus on packet forwarding techniques. TSN packet forwarding techniques can be classified into Synchronous and Asynchronous framework. Synchronous approach allocates fixed time period for a class, yet is complex for large networks. Asynchronous approach provides delay guarantee by regulator-scheduler pair, yet is unnecessarily complex, too. We propose network components for TSN Asynchronous architecture, which remove the complexity of maintaining flow state for regulation decisions. Despite such a simplicity, the proposed architecture satisfies the TSN's delay requirements provided the limited high priority traffic's maximum packet length.

Development of a distributed high-speed data acquisition and monitoring system based on a special data packet format for HUST RF negative ion source

  • Li, Dong;Yin, Ling;Wang, Sai;Zuo, Chen;Chen, Dezhi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3587-3594
    • /
    • 2022
  • A distributed high-speed data acquisition and monitoring system for the RF negative ion source at Huazhong University of Science and Technology (HUST) is developed, which consists of data acquisition, data forwarding and data processing. Firstly, the data acquisition modules sample physical signals at high speed and upload the sampling data with corresponding absolute-time labels over UDP, which builds the time correlation among different signals. And a special data packet format is proposed for the data upload, which is convenient for packing or parsing a fixed-length packet, especially when the span of the time labels in a packet crosses an absolute second. The data forwarding modules then receive the UDP messages and distribute their data packets to the real-time display module and the data storage modules by PUB/SUB-pattern message queue of ZeroMQ. As for the data storage, a scheme combining the file server and MySQL database is adopted to increase the storage rate and facilitate the data query. The test results show that the loss rate of the data packets is within the range of 0-5% and the storage rate is higher than 20 Mbps, both acceptable for the HUST RF negative ion source.

Mobility Support Scheme Based on Machine Learning in Industrial Wireless Sensor Network (산업용 무선 센서 네트워크에서의 기계학습 기반 이동성 지원 방안)

  • Kim, Sangdae;Kim, Cheonyong;Cho, Hyunchong;Jung, Kwansoo;Oh, Seungmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.256-264
    • /
    • 2020
  • Industrial Wireless Sensor Networks (IWSNs) is exploited to achieve various objectives such as improving productivity and reducing cost in the diversity of industrial application, and it has requirements such as low-delay and high reliability packet transmission. To accomplish the requirement, the network manager performs graph construction and resource allocation about network topology, and determines the transmission cycle and path of each node in advance. However, this network management scheme cannot treat mobile devices that cause continuous topology changes because graph reconstruction and resource reallocation should be performed as network topology changes. That is, despite the growing need of mobile devices in many industries, existing scheme cannot adequately respond to path failure caused by movement of mobile device and packet loss in the process of path recovery. To solve this problem, a network management scheme is required to prevent packet loss caused by mobile devices. Thus, we analyse the location and movement cycle of mobile devices over time using machine learning for predicting the mobility pattern. In the proposed scheme, the network manager could prevent the problems caused by mobile devices through performing graph construction and resource allocation for the predicted network topology based on the movement pattern. Performance evaluation results show a prediction rate of about 86% compared with actual movement pattern, and a higher packet delivery ratio and a lower resource share compared to existing scheme.

Study of Selective Cell Drop Scheme using Fuzzy Logic on TCP/IP (TCP/IP에서 퍼지 논리를 사용한 선택적 셀 제거 방식에 관한 연구)

  • 조미령;양성현;이상훈;강준길
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • This paper presents some studies on the Internet TCP/IP(Transmission Control Protocol-Internet Protocol) traffic over ATM(Asynchronous Transfer Mode) UBR(Unspecified Bit Rate) and ABR(Available Bit Rate) classes of service. Fuzzy logic prediction has been used to improve the efficiency and fairness of traffic throughput. For TCP/IP over UBR, a novel fuzzy logic based cell dropping scheme is presented. This is referred to as fuzzy logic selective cell drop (FSCD). A key feature of the scheme is its ability to accept or drop a new incoming packet dynamically based on the predicted future buffer condition in the switch. This is achieved by using fuzzy logic prediction for the production of a drop factor. Packet dropping decision is then based on this drop factor and a predefined threshold value. Simulation results show that the proposed scheme significantly improves TCP/IP efficiency and fairness. To study TCP/IP over ABR, we applied the fuzzy logic ABR service buffer management scheme from our previous work to both approximate and exact fair rate computation ER(Explicit cell Rate) switch algorithms. We then compared the performance of the fuzzy logic control with conventional schemes. Simulation results show that on zero TCP packet loss, the fuzzy logic control scheme achieves maximum efficiency and perfect fairness with a smaller buffer size. When mixed with VBR traffic, the fuzzy logic control scheme achieves higher efficiency with lower cell loss.

  • PDF