• Title/Summary/Keyword: package material

Search Result 475, Processing Time 0.031 seconds

Effect of Ion-beam Pre-treatment on the Interfacial Adhesion of Sputter-deposited Cu film on FR-4 Substrate (이온빔 전처리가 스퍼터 증착된 Cu 박막과 FR-4 기판 사이의 계면접착력에 미치는 영향)

  • Min, Kyoung-Jin;Park, Sung-Cheol;Lee, Ki-Wook;Kim, Jae-Dong;Kim, Do-Geun;Lee, Gun-Hwan;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • The effects of $Ar/O_2$ ion-beam pre-treatment conditions on the interfacial adhesion energy of sputterdeposited Cu thin film to FR-4 substrate were systematically investigated in order to understand the interfacial bonding mechanism for practical application to advanced chip-in-substrate package systems. Measured peel strength increases from $45.8{\pm}5.7g/mm$ to $61.3{\pm}2.4g/mm$ by $Ar/O_2$ ion-beam pre-treatment with anode voltage of 64 V. Interfacial bonding mechanism between sputter-deposited Cu film and FR-4 substrate seems to be dominated by chemical bonding effect rather than mechanical interlocking effect. It is found that chemical bonding intensity between carbon and oxygen at FR-4 surface increases due to $Ar/O_2$ ion-beam pretreatment, which seems to be related to the strong adhesion energy between sputter-deposited Cu film and FR-4 substrate.

Factors Affecting the Recognition and Practice of Hazardous Chemical Substance & the Management of Material Safety Data Sheet (MSDS) among Workers in Dental Clinics (구강보건의료기관 종사들의 유해화학물질 인식, 실천 및 물질안전보건자료 (MSDS) 관리에 영향을 미치는 요인)

  • Jung, Hye-Young;Mun, Won-Suk;Kim, Ji-Young
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.3
    • /
    • pp.79-86
    • /
    • 2021
  • Purpose : This study was conducted to provide fundamental data to prepare for countermeasure to protect health of workers in the dental clinics from hazardous chemical substance, and to assess effecting factors on management of Material Safety Date Sheet(MSDS) and handling of hazardous chemical substance among workers in dental clinics. Methods : This study was carried out a survey with structured self-administered questionnaire which was consisted of 7 questions about the management of MSDS, 9 questions about recognition and practice of hazardous chemical substances in dental clinics, and 7 questions about general characteristics. Total subjects of this study were 204 adult who workers in dental clinics located in Busan and Gyeng-nam province area. The collected data were analysed using the SPSS statistical package program (ver. 23.0). Results : The factor that positively affected factor on recognition and practice of hazardous chemical substances in dental clinics has experience that has been institutional health-care accreditation. The factor that positively affected the management of MSDS has experience that has been institutional health-care accreditation. Conclusion : It is necessary to prepare countermeasures such as campaign and education on cognition of general chemical substances, and also the author concern that it should be perform the education on handling of hazardous chemical substances in dental clinics for more effecting management of MSDS. In order to improve the management of MSDS and improve the awareness and safety of chemicals, it is necessary to encourage the implementation of the institutional health-care accreditation system or prepare guidelines for the management of MSDS.

Assessment of the quality of life in maxillectomy patients: A longitudinal study

  • Kumar, Pradeep;Alvi, Habib Ahmad;Rao, Jitendra;Singh, Balendra Pratap;Jurel, Sunit Kumar;Kumar, Lakshya;Aggarwal, Himanshi
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • PURPOSE. To longitudinally assess the quality of life in maxillectomy patients rehabilitated with obturator prosthesis. MATERIALS AND METHODS. Thirty-six subjects were enrolled in the span of 16 months, out of which six were dropouts. Subjects (age group 20-60 years) with maxillary defects, irrespective of the cause, planned for definite obturator prosthesis, were recruited. The Hindi version of European Organization for Research and Treatment of Cancer, Head and Neck version 1 of Quality of Life Questionnaire was used before surgical intervention and one month after definitive obturator. Questionnaire includes 35 questions related to the patient's physical health, well being, psychological status, social relation and environmental conditions. The data were processed with statistical package for social science (SPSS). Probability level of P<.05 was considered statistically significant. RESULTS. The quality of life after rehabilitation with obturator prosthesis was 81.48% (${\pm}13.64$) on average. On item-level, maximum mean scores were obtained for items problem with teeth ($1.87{\pm}0.94$), pain in mouth ($1.80{\pm}0.92$), trouble in eating ($1.70{\pm}0.88$), trouble in talking to other people ($1.60{\pm}1.22$), problems in swallowing solid food ($1.57{\pm}1.22$) and bothering appearance ($1.53{\pm}1.04$); while minimum scores were obtained for the items coughing ($1.17{\pm}0.38$), hoarseness of voice ($1.17{\pm}0.53$), painful throat ($1.13{\pm}0.43$), trouble in having social contacts with friends ($1.10{\pm}0.40$) and trouble having physical contacts with family or friends ($1.10{\pm}0.31$). CONCLUSION. Obturator prosthesis is a highly positive and non-invasive approach to improve the quality of life of patients with maxillectomy defects.

Life Cycle Assessment and Improvement Assessment for Manufacturing Process of Corrugated Package (골판지 포장재의 생산공정에 대한 LCA 수행 및 친환경 공정개선)

  • Jo, Hyun Jung;Hwang, Yong Woo;Park, Kwang Ho;Jo, Byoung Muk;Kim, Hyoung Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.620-627
    • /
    • 2005
  • In this study, life cycle assessment (LCA) on one of corrugated cardboard box as functional unit was carried out. System boundary of this study divided according to raw material acquisition, corrugated cardboard manufacture and corrugated cardboard box manufacture stage. And environmental impacts are evaluated on each stage and sub-process. The impact categories are classified into eight categories of abiotic resource depletion, global warming stratospheric ozone depletion, photochemical oxidant creation, air acidification, eutrophication, ecotoxicity and human toxicity. From the results, it is found that environment impacts at raw material acquisition stage is the highest as about 92% of whole stage due to liner board manufacture stage. The highest environmental impacts at sub-process of corrugated cardboard and box manufacture stage is a single facer and D/W backer process that included as main process in corrugated cardboard manufacture, and is caused by used energies like electricity, B-C oil, and etc. And then diagnosis for clean production process system of package is carried out. Through diagnosis, on loss rate is reduced and inner pressure intensity of box is improved. After improvement, environmental impact was decreased about 3.8% compared with before improvement.

Moire Interferometry Measurement and Numerical Analysis for Hygroscopic Swelling of Al-Polymer Joint (Al-Polymer 접합체의 흡습팽창에 대한 모아레 간섭 측정 및 수치해석)

  • Kim, Kibum;Kim, Yong-Yun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3442-3447
    • /
    • 2014
  • A simple method to evaluate the hygroscopic characteristics of polymer of microelectronic plastic package is suggested. To evaluate the characteristics, specimens were prepared, and the internally absorbed moisture masses were measured as a function of the absorbing time and calculated numerically. The hygroscopic pressure ratio was calculated by heat transfer analysis supported by commercial FEM code because the hygroscopic diffusion equation has the same form as the heat transfer equation. The moisture masses were then summed by the self developed code. The nonconductive polymers had quite different characteristics for the different lots, even though they were the same products. The absorbed moisture mass variations were calculated for several different characteristics, and the optimal curve of the mass variation close to experimental data was selected, whose solubility and diffusivity were affected by the hygroscopic characteristics of the material. The method can be useful in the industrial fields to quickly characterize the polymer material of the semiconductor package because the fast correspondence is normally required in industry. The weight changes in the aluminum-nonconductive-polymer joint due to moisture absorption were measured. The deformed system was also measured using the Moire Interferometry system and compared with the results of finite element analysis.

Copper Interconnection and Flip Chip Packaging Laboratory Activity for Microelectronics Manufacturing Engineers

  • Moon, Dae-Ho;Ha, Tae-Min;Kim, Boom-Soo;Han, Seung-Soo;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.431-432
    • /
    • 2012
  • In the era of 20 nm scaled semiconductor volume manufacturing, Microelectronics Manufacturing Engineering Education is presented in this paper. The purpose of microelectronic engineering education is to educate engineers to work in the semiconductor industry; it is therefore should be considered even before than technology development. Three Microelectronics Manufacturing Engineering related courses are introduced, and how undergraduate students acquired hands-on experience on Microelectronics fabrication and manufacturing. Conventionally employed wire bonding was recognized as not only an additional parasitic source in high-frequency mobile applications due to the increased inductance caused from the wiring loop, but also a huddle for minimizing IC packaging footprint. To alleviate the concerns, chip bumping technologies such as flip chip bumping and pillar bumping have been suggested as promising chip assembly methods to provide high-density interconnects and lower signal propagation delay [1,2]. Aluminum as metal interconnecting material over the decades in integrated circuits (ICs) manufacturing has been rapidly replaced with copper in majority IC products. A single copper metal layer with various test patterns of lines and vias and $400{\mu}m$ by $400{\mu}m$ interconnected pads are formed. Mask M1 allows metal interconnection patterns on 4" wafers with AZ1512 positive tone photoresist, and Cu/TiN/Ti layers are wet etched in two steps. We employed WPR, a thick patternable negative photoresist, manufactured by JSR Corp., which is specifically developed as dielectric material for multi- chip packaging (MCP) and package-on-package (PoP). Spin-coating at 1,000 rpm, i-line UV exposure, and 1 hour curing at $110^{\circ}C$ allows about $25{\mu}m$ thick passivation layer before performing wafer level soldering. Conventional Si3N4 passivation between Cu and WPR layer using plasma CVD can be an optional. To practice the board level flip chip assembly, individual students draw their own fan-outs of 40 rectangle pads using Eagle CAD, a free PCB artwork EDA. Individuals then transfer the test circuitry on a blank CCFL board followed by Cu etching and solder mask processes. Negative dry film resist (DFR), Accimage$^{(R)}$, manufactured by Kolon Industries, Inc., was used for solder resist for ball grid array (BGA). We demonstrated how Microelectronics Manufacturing Engineering education has been performed by presenting brief intermediate by-product from undergraduate and graduate students. Microelectronics Manufacturing Engineering, once again, is to educating engineers to actively work in the area of semiconductor manufacturing. Through one semester senior level hands-on laboratory course, participating students will have clearer understanding on microelectronics manufacturing and realized the importance of manufacturing yield in practice.

  • PDF

Effect of Marangoni flow on Surface Roughness and Packing Density of Inkjet-printed Alumina Film by Modulating Ink Solvent Composition

  • Jang, Hun-Woo;Kim, Ji-Hoon;Kim, Hyo-Tae;Yoon, Young-Joon;Kim, Jong-Hee;Hwang, Hae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.99-99
    • /
    • 2009
  • Two different micro-flows during the evaporation of ink droplets were achieved by engineering both surface tension gradient and compositional gradient across the ink droplet: (1) Coffee-ring generating flow resulting from the outward flow inside the ink droplet & (2) Marangoni flow leading to the circulation flow inside the ink droplet. The surface tension gradient and the compositional gradient in the ink droplets were tailored by mixing two different solvents with difference surface tension and boiling point. In order to create the coffee-ring generating flow (outward flow), a single-solvent system using N,N-dimethylformamide with nano-sized spherical alumina particles was formulated, Marangoni flow (circulation flow) was created in the ink droplets by combining N,N-dimethylformamide and fotmamide with the spherical alumina powders as a co-solvent ink system. We have investigated the effect of these two different flows on the formation of ceramic films by inkjet printing method, The packing density of the ceramic films printed with two different ink systems (single- and co-solvent systems) and their surface roughness were characterized. The dielectric properties of these inkjet-printed ceramic films such as dielectric constant and dissipation factor were also studied in order to evaluate the feasibility of their application to the electronic ceramic package substrate.

  • PDF

Mathematical Simulation for the Prediction of the Shelf Life of Tofu Packaged in a Polyethylene Container (폴리에틸렌 필름으로 포장된 두부의 보관수명 예측을 위한 수치모사)

  • Kim, Jai Neung;Rim, Byung-O;Shon, Tae-Won;Chung, Gui-Yung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.889-893
    • /
    • 1998
  • In this research, mathematical models for predicting the shelf life of packaged tofu in a polyethylene container were developed. Transfer of oxygen in air through the package and then diffusion of oxygen into the filled water and the tofu with the simultaneous oxygen consumption by micoorganisms were studied. The results of simulation showed that the increase of microorganisms in the filled water was more than that in tofu. As a result, it turns out that the shelf life of packaged tofu was not determined by the number of microorganisms in the tofu, but by that in the filled water. Additionally, the effects of physical properties of packaging material and packaged materials, such as the oxygen permeability of packaging material, oxygen diffusion coefficient and the initial oxygen concentration in filled water, and the depth of the filled water, on the shelf life of packaged tofu, were observed.

  • PDF

Inkjet Printing Process to Fabricate Non-sintered Low Loss Density for 3D Integration Technology (잉크젯 프린팅 공정을 이용한 3D Integration 집적 기술의 무소결 고충진 유전체막 제조)

  • Jang, Hun-Woo;Kim, Ji-Hoon;Koo, Eun-Hae;Kim, Hyo-Tae;Yoon, Young-Joon;Hwang, Hae-Jin;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.192-192
    • /
    • 2009
  • We have successfully demonstrated the inkjet printing process to fabricate $Al_2O_3$ thick films without a high temperature sintering process. A single solvent system had a coffee ring pattern after printing of $Al_2O_3$ dot, line and area. In order to fabricate the smooth surface of $Al_2O_3$ thick film, we have introduced a co-solvent system which has nano-sized $Al_2O_3$ powders in the mixture of Ethylene glycol monomethyl ester and Di propylene glycol methyl ether. This co-solvent system approached a uniform and dense deposition of $Al_2O_3$ powders on the substrate. The packing density of inkjet-printed $Al_2O_3$ films is more than 70% which is very high compared to the value obtained from the films synthesized by other conventional methods such as casting processes. The characterization of the inkjet-printed $Al_2O_3$ films has been implemented to investigate its thickness and roughness. Also the dielectric loss of the films has been measured to understand the feasibility of its application to 3D integration package substrate.

  • PDF

Multi-Scale Heterogeneous Fracture Modeling of Asphalt Mixture Using Microfabric Distinct Element Approach

  • Kim Hyun-Wook;Buttler William G.
    • International Journal of Highway Engineering
    • /
    • v.8 no.1 s.27
    • /
    • pp.139-152
    • /
    • 2006
  • Many experimental and numerical approaches have been developed to evaluate paving materials and to predict pavement response and distress. Micromechanical simulation modeling is a technology that can reduce the number of physical tests required in material formulation and design and that can provide more details, e.g., the internal stress and strain state, and energy evolution and dissipation in simulated specimens with realistic microstructural features. A clustered distinct element modeling (DEM) approach was implemented In the two-dimensional particle flow software package (PFC-2D) to study the complex behavior observed in asphalt mixture fracturing. The relationship between continuous and discontinuous material properties was defined based on the potential energy approach. The theoretical relationship was validated with the uniform axial compression and cantilever beam model using two-dimensional plane strain and plane stress models. A bilinear cohesive displacement-softening model was implemented as an intrinsic interface and applied for both homogeneous and heterogeneous fracture modeling in order to simulate behavior in the fracture process zone and to simulate crack propagation. A disk-shaped compact tension test (DC(T)) with heterogeneous microstructure was simulated and compared with the experimental fracture test results to study Mode I fracture. The realistic arbitrary crack propagation including crack deflection, microcracking, crack face sliding, crack branching, and crack tip blunting could be represented in the fracture models. This micromechanical modeling approach represents the early developmental stages towards a 'virtual asphalt laboratory,' where simulations of laboratory tests and eventually field response and distress predictions can be made to enhance our understanding of pavement distress mechanisms, such its thermal fracture, reflective cracking, and fatigue crack growth.

  • PDF