• 제목/요약/키워드: pRBFNNs (polynomial based Radial Basis Function Neural Network)

검색결과 4건 처리시간 0.018초

공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석 (K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies)

  • 김욱동;오성권
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계 (A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image)

  • 오성권;석진욱;김기상;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

숫자 인식을 위한 PCA 기반 pRBFNNs 패턴 분류기 설계 (Design of PCA-based pRBFNNs Pattern Classifier for Digit Recognition)

  • 이승철;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제25권4호
    • /
    • pp.355-360
    • /
    • 2015
  • 본 논문에서는 필기체 숫자를 인식하기 위해 주성분 분석법(PCA) 기반 방사형 기저함수 신경회로망(pRBFNNs) 패턴 분류기를 설계한다. 제안된 패턴 분류기는 PCA를 이용한 데이터 전처리 단계와 pRBFNNs를 이용한 분류 단계로 구성된다. 전처리 단계에서는 PCA를 사용하여 주어진 데이터의 정보손실을 최소화한 특징데이터를 생성하고, 이를 분류 단계인 pRBFNNs의 입력으로 사용한다. 제안된 분류기의 조건부에서는 Fuzzy C-Means(FCM) 클러스터링 알고리즘으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 결론부에서는 최소자승법(LSE)을 사용하여 다항식 계수를 구하였다. 제안된 분류기의 성능평가를 위해 대표적인 필기체 숫자데이터인 MNIST 데이터를 사용하였으며, 제안된 분류기의 결과를 기존 다른 분류기들과 비교한다.

HOG-PCA기반 pRBFNNs 패턴분류기를 이용한 보행자 검출 시스템의 설계 및 구현 (Design & Implementation of Pedestrian Detection System Using HOG-PCA Based pRBFNNs Pattern Classifier)

  • 김진율;박찬준;오성권
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1064-1073
    • /
    • 2015
  • In this study, we introduce the pedestrian detection system by using the feature of HOG-PCA and RBFNNs pattern classifier. HOG(Histogram of Oriented Gradient) feature is extracted from input image to identify and recognize a object. And a dimension is reduced for improving performance as well as processing speed by using PCA which is a typical dimensional reduction algorithm. So, the feature of HOG-PCA through the dimensional reduction by using PCA leads to the improvement of the detection rate. FCM clustering algorithm is used instead of gaussian function to apply the characteristic of input data as well and connection weight is used by polynomial expression such as constant, linear, quadratic and modified quadratic. Finally, INRIA person database known as one of the benchmark dataset used for pedestrian detection is applied for the performance evaluation of the proposed classifier. The experimental result of the proposed classifier are compared with those studied by Dalal.