• Title/Summary/Keyword: pH-Sensitive hydrogel

Search Result 30, Processing Time 0.02 seconds

Preparation of Positively and Negatively Charged Carbon Nanotube-Collagen Hydrogels with pH Sensitive Characteristic (양전하와 음전하를 띄며 pH 감응성인 카본나노튜브-콜라젠 Hydrogel의 합성)

  • Seo, Jae-Won;Shin, Ueon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.187-193
    • /
    • 2016
  • In this study, preparation of positively and negatively charged carbon nanotube (CNT)-collagen (CG) hydrogels with pH sensitive characteristic was reported. The positive and negative characteristics of the prepared hydrogels were created by introduction of positively functionalized CNT-NH2 and negatively functionalized CNT-COOH, respectively, into the collagen hydrogel. The surface charge of CNTs (CNT-NH2 and CNT-COOH), CG and CNTs/CG hydrogels was measured by Zetasizer. The swelling ratios of CNT-NH2/CG and CNT-COOH/CG hydrogels in aqueous solution were checked by measuring of weight changes of the hydrogels in the range of pH 2~10. In detail, the positively charged CNT-NH2/CG hydrogel swelled up to 5% at pH 4 in comparison to the weight at pH 7, while the negatively charged CNT-COOH/CG hydrogel swelled up to 10% at pH 10. The prepared CNT-NH2/CG and CNT-COOH/CG hydrogels will be very useful as pH sensitive oral drug-delivering systems for gastrointestine (pH ~2) and small intestine (pH ~9), respectively.

Effect of pH-Sensitive P(MAA-co-PEGMA) Hydrogels on Release and Stability of Albumin (pH 감응성 P(MAA-co-PEGMA) 수화젤이 알부민의 방출과 안정성에 미치는 영향)

  • Yang, Juseung;Kim, Bumsang
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.262-268
    • /
    • 2013
  • pH-sensitive P(MAA-co-PEGMA) hydrogel particles were prepared and their feasibility as smart delivery carriers for cosmetic ingredients was evaluated. P(MAA-co-PEGMA) hydrogel particles having an average size of approx. $2{\mu}m$ were synthesized via dispersion photopolymerization. There was a drastic change in the swelling ratio of P(MAA-co-PEGMA) particles at a pH of around 5 due to the ionization of MAA in the hydrogel and as the amount of MAA in the hydrogel increased, the swelling ratio increased at a pH above 5. The P(MAA-co-PEGMA) hydrogel particles showed a pH-sensitive release behavior. Thus, at pH 4 almost none of the albumin permeated through the skin while at pH 6 relatively high skin permeability was obtained. The albumin loaded in the P(MAA-co-PEGMA) hydrogel particles was hardly degraded in the presence of pepsin and its stability was maintained.

Effect of Phenylboronic Acid on the Swelling-Shrinking Behavior of Hydrogel (Hydrogel의 팽윤-수축 거동에 미치는 Phenylboronic Acid의 영향)

  • Lee, Jong-Ho;Oh, Han-Jun;Cho, Donghwan;Han, In Suk
    • Journal of Adhesion and Interface
    • /
    • v.12 no.2
    • /
    • pp.56-61
    • /
    • 2011
  • In the present study, glucose-sensitive hydrogels using phenylboronic acid (PBA) without glucose oxidase and catalase were prepared. The swelling-shrinking behavior of the hydrogel according to the variation of pH and glucose and ionic concentrations was investigated. The swelling ratio of the hydrogel containing PBA increased with increasing the glucose concentration and the volume was very sensitively varied with the pH. However, the ionic concentration did not change significantly the relative swelling ratio on the hydrogel, indicating that the hydrogel was dimensionally stable.

Preparation and pH-Sensitive Release Behavior of Alginate/Activated Carbon Composite Magnetic Hydrogels

  • Han, Min-Hee;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.122-126
    • /
    • 2010
  • The alginate-based hydrogel was prepared as a pH-sensitive drug delivery system. To enhance the drug loading capacity, activated carbon was introduced as a drug absorbent. The iron oxide was incorporated into the alginate matrix for the magnetic transferring to the target organ. The activated carbon and iron-oxide were dispersed uniformly in the alginate hydrogel. The drug release from the alginate/activated carbon composite hydrogel was carried out in various pH conditions with vitamin B12 and Lactobacillus lamnosers as model drugs. The fast and sustainable release of drug was observed in the basic condition due to the pH-sensitive solubility of alginate. The novel drug delivery system having pH-sensitive release property and magnetic movement to target place was developed by using the alginate/activated carbon composite magnetic hydrogels.

Swelling Characteristics of a Hydrogel poly(N-isopropylacrylamide-co-N N'-dimethylaminopropyl methacrylamide) Sensitive to Both pH and Temperature (pH 및 온도에 동시에 민감한 하이드로젤의 팽윤 특성)

  • 손창규;정인식;박창호
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 1999
  • A hydrogel, poly(N-isopropylacrylamide-co-N,N'-dimethylaminopropyl methacrylamide), sensitive to both pH and temperature was synthesized and characterized for its welling behavior, lower critical solution temperature (LCST), and its appearance. The hydrogel with 5 mol% of N,N'-diemthylaminopropyl methacrylamide (DMAPMAAm) increased its volume phenomenonally in a lower pH range (ph 1~8) even at temperature ($37^{\circ}C$ and $40^{\circ}C$) higher than LCST. This behavior was unique compared to the temperature -sensitive hydrogel which did not exhibit any swelling in the same pH range. The hydrogel with 20 mol% of DMAPMAAm was swollen significantly at a higher pH of 12. With pH decrease from 12 to 2 water content in the gel increased from 38.8 wt% and 60.6 wt%, and 90.8 wt% for 5 mol% and 20 mol% gel, respectively. The transition pH that pH effect overwhelmed temperature effect occurred at a lower pH for a higher temperature ($40^{\circ}C$) and a lower mol% (5 mol%) of DMAPMAAm. Transparency and LCST of the gel increased with higher DMAPMAAm mol%.

  • PDF

Characterization of a pH/Temperature-Sensitive Hydrogel Synthesized at Different pH and Temperature Conditions (pH/온도-동시 민감성 Hydrogel의 합성조건에 따른 특성 연구)

  • 유형덕;정인식;박창호
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.548-555
    • /
    • 2000
  • A hydrogel, poly(N-isopropylacrylamide-co-N, N-dimethylaminopropylmethacrylamide), sensitive to both pH and temperature, was synthesized and characterized at $^13∼23{\circ}C$ and pH of 10.3∼12.3. The gel was more transparent and mechanically stronger at lower preparation temperature and pH. Large pores observed in scanning electron microscope seem to be responsible for the lower biomolecular separation efficiency. The lower critical solution temperature (LCST) decreased at a higher polymerization temperature. At $25^{\circ}C$, which is lower than the LCST, the gel was swollen regardless of the solution pH. At $40^{\circ}C$, however, the gel was swollen at neutral and acidic pHs even though the temperature was higher than the LCST. The gel collapse pH, defined as the point at which the gel made its largest volume decrease per unit pH increment, increased as the gel preparation temperature increased.

  • PDF

Controlled Release Behavior of pH-Responsive Composite Hydrogel Containing Activated Carbon

  • Yun, Ju-Mi;Im, Ji-Sun;Oh, Ae-Ri;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.10 no.1
    • /
    • pp.33-37
    • /
    • 2009
  • Activated carbon (AC) is one of the most effective adsorbents for organic compounds because of their extended surface area, high adsorption capacity, microporous structure and special surface reactivity. The composites of pH-sensitive hydrogel and activated carbon were prepared in order to improve the loading capacity of drug. The pH-sensitive hydrogel matrix swelled well in the basic condition to release the drug loaded in AC. The release of drug was controlled depending on both the pH due to the ionization of the carboxylic acid group and the AC due to the surface properties.

Synthesis and Characterization of pH-sensitive and Self-oscillating IPN Hydrogel in a pH Oscillator (pH 진동계 안에서 pH 감응성 자기진동 IPN 하이드로젤의 합성과 분석)

  • Wang, Liping;Ren, Jie;Zhang, Xiaoyan;Yang, Xiaoci;Yang, Wu
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.359-364
    • /
    • 2015
  • A self-oscillating interpenetrating polymer network (IPN) poly(acrylic acid)/poly(ethylene glycol) (PAA/PEG) hydrogel was prepared by using radical polymerization with a two-step method. The IPN hydrogel was characterized by FTIR spectroscopy and morphological analysis. The results indicated that the chains of PEG and PAA twined to form porous structure which is beneficial to water molecules entering inside of the hydrogel. In addition, the pH-responsive behavior, salt sensitivity, swelling/de-swelling oscillatory behaviors and self-oscillation in a closed pH oscillator were also studied. The results showed that the prepared hydrogel exhibited pH-sensitivity, good swelling/de-swelling reversibility and excellent salt sensitivity. The self-oscillating behavior of swelling/de-swelling for the prepared hydrogel was caused by pH alteration coupled with the external media. This study may create a new possibility as biomaterial including new self-walking actuators and other related devices.

Drug Release from the Enzyme-Degradable and pH-Sensitive Hydrogel Composed of Glycidyl Methacrylate Dextran and Poly{acrylic acid)

  • Kim In-Sook;Oh In-Joon
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.983-987
    • /
    • 2005
  • Hydrogels composed of glycidyl methacrylate dextran (GMD) and poly(acrylic acid, PM) were prepared by UV irradiation method for colon-specific drug delivery. GMD was synthesized by coupling of glycidyl methacrylate to dextran in the presence of 4-(N,N-dimethylamino)pyridine. GMD was photo-polymerized by ammonium peroxydisulfate as initiating system in phosphate­buffered solution (0.1 M, pH 7.4). And then, acrylic acid monomer was added and subsequently heat-polymerized by 2,2'-azobisisobutyronitrile as an initiator. The hydrogels exhibited high swelling ratio (about 20) at $37^{\circ}C$, and showed a pH-dependent swelling behavior. In addition, the swelling ratio of the hydrogel was remarkably enhanced to about 45 times in the presence of dextranase at pH 7.4. The swelling-deswelling behavior proceeded reversibly for the GMD/PM hydrogels between pH 2 and pH 7.4. Release of 5-aminosalicylic acid from the GMD/PAA hydrogels was evaluated in simulated gastrointestinal pH fluids in the absence or presence of dextranase. We concluded that the hydrogels prepared could be used as a dual-sensitive drug carrier for sequential release in gastrointestinal tract.

Poly(L-lysine) Based Semi-interpenetrating Polymer Network as pH-responsive Hydrogel for Controlled Release of a Model Protein Drug Streptokinase

  • Park, Yoon-Jeong;Jin Chang;Chen, Pen-Chung;Victor Chi-Min Yang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.326-331
    • /
    • 2001
  • With the aim of developing of pH-sensitive controlled drug release system, a poly(Llysine) (PLL) based cationic semi-interpenetrating polymer network (semi-IPN) has been synthesized. This cationic hydrogel was designed to swell at lower pH and de-swell at higher pH and therefore be applicable for achieving regulated drug release at a specific pH range. In addition to the pH sensitivity, this hydrogel was anticipated to interact with an ionic drug, providing another means to regulate the release rate of ionic drugs. This semi-IPN hydrogel was prepared using a free-radical polymerization method and by crosslinking of the polyethylene glycol (PEG)-methacrylate polymer through the PLL network. The two polymers were penetrated with each other via interpolymer complexation to yield the semi-IPN structures. The PLL hydrogel thus prepared showed dynamic swelling/de-swelling behavior in response to pH change, and such a behavior was influenced by both the concentrations of PLL and PEG-methacrylate. Drug release from this semi-IPN hydrogel was also investigated using a model protein drug, streptokinase. Streptokinase release was found to be dependent on its ionic interaction with the PLL backbones as well as on the swelling of the semi-IPN hydrogel. These results suggest that a PLL semi-IPN hydrogel could potentially be used as a drug delivery platform to modulate drug release by pH-sensitivity and ionic interaction.

  • PDF