• Title/Summary/Keyword: pH stability

Search Result 2,390, Processing Time 0.031 seconds

Solubility, Emulsion Capacity, and Emulsion Stability of Protein Recovered from Red Crab Processing Water (홍게 가공회수 단백질의 용해도, 유화력 및 안정성)

  • Kim, Yong-Jin;Sin, Tae-Seon;O, Hun-Il
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.3
    • /
    • pp.319-324
    • /
    • 1996
  • The functional properties of protein recovered from red crab (Chitinonecetes opiiie) processing in water (RCP) were examined and compared with those of soybean protein isolate at pH 2~10 in water and NaCl solu5ion. The solubilities of RCP and SPI were miniumu at pH 4, the isoelectric point and increased significantly at lower or higher than pH 4. Solubilities in NaCl solution for both proteins decreased with incr NaCl concentration increase at all pH ranges. Emulsion capacity for both proteins was also minimum at pH 4 and increased as protein concentration increased from 2 to 6%. Emulsion capacity of RCP was higher than these of SPI at pH 6∼10 and all protein concentrations. Emulsion stability showed a similar trend to that of emulsion capacity. RCP had higher oft absorption capacity and lower water absorption capacity than SPI.

  • PDF

Relationship between pH and colloidal stability of three Hawaii soils (3종류의 하와이 토양의 pH와 토양분산도와의 관계)

  • Lim, Soo-Kil H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.95-101
    • /
    • 1991
  • The results of relationships between colloidal stability and soil pH on three Hawaii's volcanic ash soils developed under the three different rainfall conditions can be summarized as follows: 1. The Hilo soil only revealed the increase of colloidal stability by becoming for from Z.P.C point to either side of pH. 2. Hilo and Kawaihae soils, however, showed the increase of colloidal stability only in the higher pH range than their Z.P.C. 3. $P_2O_5$ drying procers decreased colloidal stability kof these soils because of so called irreversible drying characteristics of amorphous materials and the decrement was in order of: Akaka>Hilo>Kawaihae expressing positive correlation with content of amorphous materials in them. 4. The difference of colloidal stability curves among three soils can easily be interpreted by DLVO theory considering 0.1N-HCl amount added to decrease their soil pH, respectively. The addition of large amount of 0.1N-HCl into Akaka and Kawaihae soils did not effectively develop the positive charge but resulted in the shrink of diffuse double layer thickness inducing large attraction forces among soil particles.

  • PDF

Effect of pH-Sensitive P(MAA-co-PEGMA) Hydrogels on Release and Stability of Albumin (pH 감응성 P(MAA-co-PEGMA) 수화젤이 알부민의 방출과 안정성에 미치는 영향)

  • Yang, Juseung;Kim, Bumsang
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.262-268
    • /
    • 2013
  • pH-sensitive P(MAA-co-PEGMA) hydrogel particles were prepared and their feasibility as smart delivery carriers for cosmetic ingredients was evaluated. P(MAA-co-PEGMA) hydrogel particles having an average size of approx. $2{\mu}m$ were synthesized via dispersion photopolymerization. There was a drastic change in the swelling ratio of P(MAA-co-PEGMA) particles at a pH of around 5 due to the ionization of MAA in the hydrogel and as the amount of MAA in the hydrogel increased, the swelling ratio increased at a pH above 5. The P(MAA-co-PEGMA) hydrogel particles showed a pH-sensitive release behavior. Thus, at pH 4 almost none of the albumin permeated through the skin while at pH 6 relatively high skin permeability was obtained. The albumin loaded in the P(MAA-co-PEGMA) hydrogel particles was hardly degraded in the presence of pepsin and its stability was maintained.

Studies on Characteristics and Stability of Anthocyanin Pigment Extracted from Korean Purple - Fleshed Potatoes (한국산 유색감자 색소의 특성 및 안정성에 관한 연구)

  • Park, Hong-Ju;Jeon, Tae-Woog;Lee, Sung-Hyeon;Cho, Yong-Sik;Cho, Soo-Muk;Chang, Kyu-Seob
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1544-1551
    • /
    • 2004
  • Effects of pH, sugar, ascorbic acid, organic acids and light sources on the stability of anthocyanin pigment extracted from Korean purple-fleshed potatoes (PL-6, PL-28, PL-31 and Jasim) were studied. The pH had remarkable influence on the color stability of anthocyanin pigment. With increasing pH, the color gradually fades as colorless pseudobases are formed. In acidic pH, anthocyanin was stable, but with increasing pH the color gradually changed to colorless. The addition of sugar decrease in color stability of the pigment during storage period. The most of organic acids, such as a tartaric, citric and succinic acids, were found to improve the stability of the pigment, while malic and malonic acid reduced the stability of the pigment. The addition of ascorbic acid considerable decreased in anthocyanin pigment stability, but the effect was not decreased by adding thiourea. The effect of light sources such as a darkroom, a fluorescent light, and sunlight, reduced gradually the stability of anthocyanin pigment. Therefore the pigment degradation could be minimized by shielding the light from the pigment.

A Study of $\beta$-Amylase Modified $IO_4$-Oxidized Starch -Effects of $\alpha$-Cyclodextrin- ($IO_4$-산화 전분 변형 $\beta$-아밀라아제의 안정성 및 $\alpha$-Cyclodextrin의 영향)

  • 안용근;남포능지
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.159-164
    • /
    • 1998
  • pH stability of sweet potato $\beta$-amylase modified with IO4-oxidized soluble starch was increased at pH 3, 5~9 and 11. And optimum pH was 3 and 5 for modification. Thermal stability of the enzyme modified with IO4-oxidized soluble starch was increased at 6$0^{\circ}C$ for 15 min. pH stability of barley $\beta$-amylase modified with IO4-oxidized soluble starch was increased at 3~4 and 8~11, and more increased at pH 3 and 8~11 in the presence of $\alpha$-cyclodextrin.

  • PDF

Influence of Temperature and pH on the Stability of Dimethoxy Biphenyl Monocarboxylate${\cdot}$HCl Solutions

  • Choi, Woo-Chang;Kim, Dae-Duk;Shin, Young-Hee;Lee, Chi-Ho
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.159-163
    • /
    • 2001
  • The accelerated stability of dimethoxy biphenyl monocarboxylate.HCl (DDB-S) was investigated in 6 mg/mL water solution in the pH ranging 2-10 and the temperature of $45-85^{\circ}C$. The observed rate of degradation followed first-order kinetics. The energy of activation for DDB-S degradation was calculated to be 14.1 and 16.5 $Kcal/mole$ at pH 5 and in distilled watery respectively. The degradation rate constant ($K_{25^{\circ}C}$) obtained by trending line analysis of Arrhenius plots for DDB-S was $5.3{\times}10^{-6}h^{-1}$. The times to degrade 10% ($t_{10}$) and 50% $t_{500}$) at $K_{25^{\circ}C}$ were 829 and 5,416 days, respectively. DDB-S exhibited the fastest degradation at pH 10 and the slowest rate at pH 5. In addition, at $K_{65^{\circ}C}$, degradation rate constants of DDB-S were 0.066, 0.059, 5.460, 32.171, and $1.4{\times}10^{-6}h^{-1}$ at pH 2, 5, 8, 10 and in distilled water, respectively. These observations indicated that the rate-pH profile of DDB-S showed general acid-base catalysis reaction in the range of pH 2-10.

  • PDF

A study of the Emulsifying Properties of Kidney Bean Protein Isolate (분리 강남콩 단백질의 유화특성에 관한 연구)

  • 최희령;손경희;민성희
    • Korean journal of food and cookery science
    • /
    • v.5 no.2
    • /
    • pp.9-17
    • /
    • 1989
  • This study was carried out in order to study the emulsifying properties of kidney bean protein isolate. Kidney bean protein isolate was tested for the purpose of finding out the effect of pH, addition of NaCl, and heat treatment on the solbulity and emulsion capacity, emulsion stability, surface hydropobicity and emulsion viscosity. The results were summarized as follows. 1 The solubility of kidney bean protein isolate was affected by pH and showed the lowest value at pll 4.5 which is isoelectric point of kidney bean isolate. When the kidney bean protein isolate was heated, the highest value observed at pH 2 and pH 7 was 96.11%, 97.41% respectively. 2. The emulsion capacity of kidney bean protein isolate was not significantly different with each pH. With addition of NaCl, emulsion capacity decreased steadily. When heated thr highest value observed at pH 2 and pH 7 was 82.91 ml oil/100 mg protein ($60^{\circ}C$), 82.08 m1 oil/100 mg protein ($80^{\circ}C$) respectively. 3. The emulsion stability was significantly higher at pH 4.5 than that of pH 2 and pH 7 (p 0.05) When NaCl was added, emulsion stability was generally increased after 2hrs. When heated, the highest value observed at pH 2 and pH 7 was 21.25% ($80^{\circ}C$),23.7%($100^{\circ}C$) respectively after 2hrs. 4. Surface hydrophobicity increased sharply as 0.2 M NaCl was added to pH 4.5. When heated, the surface hydrophobicity increased as the temperature increased. 5. The highest value of emulsion viscosity was observed at pH 4.5 and pH 7 when 0.2 M NaCl was added. Under heat treatment, the highest value was 48,000 cps at pH 4.5 ($40^{\circ}C$). In the case of pH 7, the highest value was 105,000 cpa at $100^{\circ}C$.

  • PDF

Stability of Ascorbic Acid in the Catechin Solution (Catechin용액 중에서 Ascorbic acid의 안정성)

  • Kim, Sang Oak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.3
    • /
    • pp.284-288
    • /
    • 1983
  • This experiment was carried out to investigate the stability of ascorbic acid (AsA) in the mixed solution of AsA and catechin according to the content changes of AsA and catechin under boiling, and for the respective concentration and pH. The loss of AsA was most for 10 minutes of boiling and accelerated by the mixture of catechin, but the loss was less in the high mixture rate than in the low the loss of catechin most for 10 minutes of boiling, also as the concentration of AsA becomes higher but that of cathchin lower, and as that of AsA lower but that of catechin higher, the loss of catechin becomes less moreover in the case of the low content ratio of catechin, the stability of AsA was better in order of the pH 4, pH 5, pH 6, namely as the pH increased, but in the case of the high better in order of the pH 6, pH 5, pH 4, that is as in decreased.

  • PDF

A Study on the Stability of the Ca-Bentonite Colloids Using a Dynamic Light Scattering Method (동적광산란 방법을 이용한 칼슘벤토나이트 콜로이드의 안정성에 대한 연구)

  • Baik Min-Hoon;Park Jong-Hoon;Cho Won-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.12-19
    • /
    • 2006
  • In this study, the stability of Ca-bentonite colloids from Gyeongju area was studied by investigating the changes in the size of the bentonite colloids using a dynamic light scattering method depending on the geochemical conditions such as pH and ionic strength. Kinetic and equilibrium coagulation behavior of the bentonite colloids was investigated by changing the pH and ionic strength of the bentonite suspensions. The results showed that the stability of the bentonite colloids strongly depended upon contact time, pH, and ionic strength. It was also shown that the bentonite colloids were unstable at higher ionic strength greater than 0.01 M $NaClO_4$ at whole pH values considered. In addition, the stability ratio Wand the critical coagulation concentration (CCC) were also calculated using the data from the kinetic coagulation experiments. The stability ratio W was decreased as the ionic strength increased and varied with pH depending on the ionic strength. The CCC of the Ca-bentonite colloids was about 0.05 M $NaClO_4$ around pH 7.

Effect of cholesterol into liposome on the stabilization of incorporated retinol

  • Lee, Jae-Uk;Lee, Soo-Jin;Kang, Joo-Sung;Lee, Kyung-Eun;Kim, Jin-Ju;Lee, Seung-Cheol
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.60-72
    • /
    • 2003
  • To investigate the effect of cholesterol in liposome on the stability of incorporated retinol, the physico-chemical experiments for various amounts of cholesterol-containing liposomes were performed. Liposome with retinol containing cholesterol was prepared as multilamella vesicles(MLVs) by dehydration/rehydration method. The incorporation efficiency of retinol into liposome was maximized as 99.31 % at 50:50 (phosphatidylcholine/cholesterol) at pH 9. The stability of incorporated retinol at low storage temperature was enhanced with increasing cholesterol content than at high storage temperature. For example, incorporated retinol in liposome at glycine buffer(pH 9} was degraded slowly during storage at 4. The degradation of retinol in liposomes was slower at pH 9 than at pH 7. These results supported that cholesterol in liposome increased largely the stability of incorporated retinol.

  • PDF