• Title/Summary/Keyword: pH stability

Search Result 2,387, Processing Time 0.031 seconds

Influence of pH, Temperature, Ionic Strength and Metal Ions on the Degradation of an Iridoid Glucoside, Aucubin, in Buffered Aqueous Solutions (완충 수용액중 pH, 온도, 이온강도 및 금속이온이 Aucubin의 분해에 미치는 영향)

  • Chun, In-Koo;Cho, Young-Mee
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.239-247
    • /
    • 1995
  • The physico-chemical stability of aucubin, a hepatoprotective iridoid glucoside, in buffered aqueous solutions was studied using a stability-indicating reversed-phase high performance liquid chromatography. The degradation of aucubin followed the pseudo-first-order kinetics. In strong acidic regions, aucubin was rapidly degraded by the specific acid catalysis, forming dark brown precipitates. From the rate-pH profiles, it was found that aucubin was most stable at the pH of about 10. From the temperature dependence of degradation, activation energies for aucubin at pH 2.1 and 4.9 were calculated to be 22.0 and 24.3 kcal/mole, respectively. The shelf-life $(t_{90%})$ for aucubin at pH 9.07 and $20^{\circ}C$ was predicted to be about 603 days. A higher ionic strength accelerated the degradation of aucubin at pH 4.01. The effect of metal ions on the degradation rate of aucubin at pH 7.16 was in the rank order of $Cu^{2+}\;>\;Fe^{3+}\;>\;Co^{2+}\;>\;Fe^{2+}\;>\;Mg^{2+}$. On the other hand, $Mn^{2+}\;and\;Ba^{2+}$ slowed the degradation rate.

  • PDF

Effect of NaCl on the Stability of Oncolytic Vaccinia Virus (항암 백시니아 바이러스의 안전성에 대한 염화나트륨의 효과)

  • Kim, Seong-Geun;Ran, Gui Shao;Kwon, Hyuk-Chan;Hwang, Tae-Ho
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2016
  • Pexa-Vec (JX-594) is a specific cancer-targeted oncolytic and immunotherapeutic vaccinia virus. The purpose of this study was to develop methods to maximize the stability of Pexa-Vec. In short-term instability testing, viral activity was rapidly decreased both at 4℃ and at room temperature (RT), but it was completely restored after sonication followed by vortex. Long-term stability testing of Pexa-Vec in the following liquid formulations was performed: (A) 30 mM Tris/pH 7.6, (B) 30 mM Tris/pH 8.6, (C) 30 mM Tris/pH 7.6, 150 mM NaCl, 15% sucrose, (D) 30 mM Tris/pH 7.6, 15% sucrose, and (E) 30 mM Tris/pH 8.6, 15% sucrose. Viral activity decreased less than 2 log10 at 4℃, and RT was observed in 3 days in B, while viral activity was not decreased even after 4–8 weeks at 4℃ and at 1 week in RT in A, suggesting that neutral pH may be essential to maintain virus stability. The addition of 15% sucrose into A (D) significantly increased viral stability at −20℃, 4℃, or RT, and it was also observed at pH 8.6 (E). The addition of 150 mM NaCl into D (C) significantly increased viral stability in addition to the sucrose effect at 4℃ or RT. Accordingly, the viral activity in formulation C was maintained for 1.5 years at 4℃, and for 1-2 weeks in RT. In conclusion, we propose that formulation C can provide the most adequate condition for the proper storage of vaccinia oncolytic virus.

Studies on the Stability of Natural Pigment Extracted from Ascidian shell (멍게 껍질(Ascidian shell)로부터 추출한 천연색소의 안정성에 대한 연구)

  • Park, Sin-Ho;Yang, Jae-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.292-298
    • /
    • 2018
  • In this study, Ascidian shell pigment was extracted, first using a 100.0 % ethanol solvent, proceeding with the dilution of it with DMSO (Dimethyl sulfoxide). The extracted pigment was evaluated to verify the stability. The absorbance of light have been evaluated according to pH levels and using the color-difference meter. As a result, it could be seen that absorbance and chromaticity ${\pm}a$ values were most stable at a pH level of 7.0 By keeping the sample at a pH level of 3.0, it could be observed that the absorbance and the chromaticity ${\pm}a$ values were decreased. Based on this observation, it can be deduced that the discoloration of the pigment can be prevented if kept at a neutral pH level. When antioxidants were added, the absorbance of the pigment increased, and the best effects could be seen in the ${\alpha}-tocopherol$ and glutathione samples.

Stability of main components and physiological activities of bee venom treated with pH (산도에 따른 봉독의 성분 및 생리활성에 대한 안정성)

  • Cho, Miran;Han, Sangmi;Kim, Jungmin;Yeo, Joohong;Hong, InPhyo;Woo, Soonok;Lee, Kwanggill
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.1
    • /
    • pp.6-9
    • /
    • 2014
  • This study was for the investigation of the stability of purified bee venom (PBV) during the treatment in the pH range from pH2 to pH9 for 24 hours, respectively. Changes of components and physiological functionalities in PBV were by evaluated silver staining, and melittin contents were measured by liquid chromatography. The antimicrobial activity against bacteria by minimum inhibitory concentration (MIC) and effect of the cell regeneration were measured by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl tetrazolium bromide (MTT) assay using human dermal fibroblast (HDF) cell. The main proteins such as melittin and phospholipase $A_2$ showed no characteristic changes. The antimicrobial activity and effect of cell regeneration showed no difference from pH2 to pH9. From this study, we suggest that components and physiological functionalities of PBV against treated pH were kept stability at from pH2 to pH9.

Physicochemical Properties, Stabilities and Pharmacokinetics of Cephalosporin 3'-Quinolone Dithiocarbamate (세팔로스포린 3'-퀴놀론의 물리화학적 성질, 안정성 및 체내약물동태)

  • 나성범;공재양;김완주;지웅길
    • YAKHAK HOEJI
    • /
    • v.37 no.6
    • /
    • pp.638-646
    • /
    • 1993
  • A cepfialosporin with an aminothiazoiylmethoxyimino-type side chain at the 7 position and bicyclic quinolone dithicarbamate at the 3' position was synthesized. It has broad and potent antivacterial activity in vitro. The antibacterial spectrum reflects contributions of both the cephalosporin moiety and the quinolone moiety. Thus, this compound was named DACD implying a dualaction cephalosporin derivative. In this paper, the physicochemical proper-ties (lipid-water partition, pKa), stability and pharmacokinetics of DACD were determined and compared with cefotaxime 3'-norfloxacin dithiocarbamate (CENO). Stability tests were studied in pH 1.20, 6.80 and 8.00 buffers and in the presence of AB type human plasma, rat liver homogenate and its .betha.-lactamase. The pharmacokinetic parameters of DACD were evaluated in mice after a single intravenous dose of 40 mg/kg. The results are as follows. The lipid-water partition coefficient of DACD was higher than that of CENO. The calculated pKa values of CENO and DACD, were 6.82$\pm$0.03, 7.53$\pm$0.21, respectively. In the hydrolysis test, half-lives (t$^{1/2}$) of CENO and DACD was 66.0 hr and 80.0 hr in pH 6.80 buffer, 190 hr and 91.4 hr in pH 8.00 buffer. CENO and DACD were rapidly hydrolyzed in human plasma and in rat liver hornogenate. Half-lives (t$_{1/2}$ of CENO and DACD were 1.29 hr and 1.15 hr in hyman plasma, 0.62 hr and 0.71 hr rat liver homogenate. In $\beta$-lactamase stability test, CENO and DACD were very stable to the .betha.-lactamases obtained from three different strains. Half-life (t$_{1/2}$) and areas under the curve (AUC) in mice were 2.33 hr and 15.97 (mg.h/1), respectively.

  • PDF

STABILITY RESULTS OF POSITIVE WEAK SOLUTION FOR SINGULAR p-LAPLACIAN NONLINEAR SYSTEM

  • KHAFAGY, SALAH;SERAG, HASSAN
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.173-179
    • /
    • 2018
  • In this paper, we investigate the stability of positive weak solution for the singular p-Laplacian nonlinear system $-div[{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u]+m(x){\mid}u{\mid}^{p-2}u={\lambda}{\mid}x{\mid}^{-(a+1)p+c}b(x)f(u)$ in ${\Omega}$, Bu = 0 on ${\partial}{\Omega}$, where ${\Omega}{\subset}R^n$ is a bounded domain with smooth boundary $Bu={\delta}h(x)u+(1-{\delta})\frac{{\partial}u}{{\partial}n}$ where ${\delta}{\in}[0,1]$, $h:{\partial}{\Omega}{\rightarrow}R^+$ with h = 1 when ${\delta}=1$, $0{\in}{\Omega}$, 1 < p < n, 0 ${\leq}$ a < ${\frac{n-p}{p}}$, m(x) is a weight function, the continuous function $b(x):{\Omega}{\rightarrow}R$ satisfies either b(x) > 0 or b(x) < 0 for all $x{\in}{\Omega}$, ${\lambda}$ is a positive parameter and $f:[0,{\infty}){\rightarrow}R$ is a continuous function. We provide a simple proof to establish that every positive solution is unstable under certain conditions.

Production system influences color stability and lipid oxidation in gluteus medius muscle

  • Ana Paula Amaral de Alcantara Salim;Micheli da Silva Ferreira;Maria Lucia Guerra Monteiro;Loise Caroline Santos de Lima;Isabelle Trezze Marins Magalhaes;Carlos Adam Conte-Junior;Sergio Borges Mano
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.785-796
    • /
    • 2023
  • Objective: We aimed to evaluate the color and oxidative stability of beef gluteus medius (GM) from cattle raised in organic and non-organic production systems. Methods: The GM samples (n = 10) were obtained from organic (ORG; n = 5) or nonorganic (NORG; n = 5) beef samples, sliced into 2.54-cm steaks, packaged in aerobic conditions, and stored for nine days at 4℃. ORG and NORG steaks were compared regarding myoglobin concentration, pH, instrumental color, delta E (ΔE), metmyoglobin reducing activity (MRA), and lipid oxidation on days 0, 5, and 9. Results: Feeding system did not influence (p>0.05) the myoglobin concentration. ORG steaks exhibited greater (p<0.05) meat pH, yellowness, and MRA, whereas NORG steaks exhibited greater (p<0.05) redness, chroma, R630/580, delta E, and lipid oxidation. ORG and NORG steaks exhibited similar (p>0.05) lightness and hue angle. During storage, ORG and NORG exhibited an increase in muscle pH, hue angle, and lipid oxidation; and a decrease (p<0.05) in redness, yellowness, chroma, and color stability (R630/580). Both samples exhibited a stable (p>0.05) pattern for lightness and MRA. Conclusion: Therefore, the production system can affect beef color and lipid stability during storage.

The Enzymatic Properties of Actinidine from Kiwifruit

  • Nam, Seung-Hee;Walsh, Marie K.;Yang, Kwang-Yeol
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.453-457
    • /
    • 2006
  • Activity and stability of kiwifruit actinidine was determined in various conditions of pH, salt, and temperature using N-${\alpha}$-CBZ-lysine P-nitrophenyl ester as the substrate. Actinidine activity was low below pH 6, and undetectable below pH 3. The enzyme was stable in a pH range of 6.0-8.5. At $4^{\circ}C$ the enzyme was inactive in the presence of greater than 36% vinegar and in 2 M NaCl. Actinidine at $25^{\circ}C$ was unstable in 24% vinegar but stable in up to 3 M NaCl. With regard to freeze-thaw stability, actinidine retained 85% residual activity after being frozen at $-20^{\circ}C$ for 3 days. Based on Arrenius and Lineweaver-Burk plots, actinidine became unstable at greater than $45^{\circ}C$ with only 30% residual activity remaining after 6 min. The Km, kcat, and kcat/Km values of actinidine were $56\;{\mu}M$, 67/sec, and $1.2\;{\mu}M/sec$, respectively.

Acid Stability of Anti-Helicobacter pyroli IgY in in Aqueous Polyol Solution

  • Lee, Kyong-Ae;Chang, Sung-Keun;Lee, Yoon-Jin;Lee, Jong-Hwa;Koo, Nan-Sook
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.488-493
    • /
    • 2002
  • IgY was separated from a hen's egg yolk that was immunized with Helicobacter pyroli. The anti-H. pyroli IgY activity at acidic pH and the suppressive effect of polyol on acid-induced inactivation of IgY were investigated. Sorbitol and xylitol were used as polyols. IgY was quite stable at pH 5~7. Irreversible inactivation of IgY was observed at pH below 4, and proceeded rapidly at pH below 3. The acid stability of IgY was enhanced in the presence of 30% sorbitol or above. In a 50% aqueous sorbitol solution, an acid-induced inactivation was almost completely suppressed at pH 3. However, the improvement of IgY activity was not observed in the aqueous xylitol solution. IgY showed almost the same activity as native IgY when sucrose was substituted for sorbitol. On the other hand, the xylitol replacement with sucrose did not enhance the acid stability of IgY. The acid-induced inactivation of IgY was related to tryptophyl fluorescence. Fluorescence emission spectra suggested that structural changes near the tryptophan residues may occur under acidic conditions. An increase in sorbitol concentration induced a blue shift. The fluorescence emission of IgY in a 50% sorbitol solution had a peak at 330 nm, which was the same emission peak that was exhibited by native IgY. Sorbitol could, therefore, be used as a good stabilizer of IgY under acidic conditions.

Phenotypic Stability of a Temperature-Controllable Expression Vector on Phenylalanine Production by Escherichia coli (대장균을 이용한 Phenylalanine 생산에 있어서 온도조절형 발현 Vector의 안정성)

  • 강상모;박인숙
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.433-438
    • /
    • 1991
  • The plasmid pSY130-14 for the high production of phenylalanine is a temperaturecontrollable expression vector composed of the $P_R$ and the $P_L$ promoter and a temperature sensitive repressor, $cI_{857}$ of bacteriophage lambda. Strain AT2471 harbouring plasmid pSY13O- 14 is induced the phenylalanine production by shifting up the incubation temperaure to $38.5^{\circ}C$. Plasmid stability of E. coli AT2471 harbouring pSY130-14 was very low, it was about 30% after 48 h cultivation at $38.5^{\circ}C$ without kanamycin. The plasmid disappeared immediately at $40^{\circ}C$ without kanamycin, and at $40^{\circ}C$ adding kanamycin, the plasmid stability decreased at the beginning, but rose with the extension of the culture time. For the improvement of plasmid stability, the plasmid obtaind was designated as pSY15O-1 by changing origin region (ori) pACYC 177 of pSY130-14 for ori pSC101. E. coli AT2471 harbouring pSY150-1 was stable at $38.5^{\circ}C$ without tetracycline, and the plasrnid stability was about 40% after 48 h cultivation at $40^{\circ}C$.

  • PDF