• Title/Summary/Keyword: pH independent reaction

Search Result 62, Processing Time 0.028 seconds

Kinetics for Mononuclear Heterocyclic Rearrangement of N-(5-phenyl-1,2,4-oxadiazol-3-yl)-N'-arylformamidine (I) (N-(5-phenyl-1,2,4-Oxadiazol-3-yl)-N'-arylformamidine의 Mononuclear Heterocyclic Rearrangement반응에 대한 반응속도론 (제1보))

  • Jung Ui Hwang;Jong Jae Chung;Young Zoo Youn
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.301-310
    • /
    • 1988
  • Reaction rates for mononuclear heterocyclic rearrangement of N-(5-phenyl-1,2,4-oxadiazol-3-yl)-N'-arylformamidines into 3-acylamino-1-aryl-1,2,4-triazoles were determined spectrophotometrically in dioxane/water (50 : 50, v/v). There are two different reaction paths according to pH. One is pH-independent path, the other is pH-dependent one. In pH-independent path, the result of substituent effect by IYT equation show that N-H bond breaking as well as new N-N bond formation controls the reaction rate. In pH-dependent path, concave-upward Hammett plot was observed. It can be concluded that new N-N bond formation is more advanced than N-H bond breaking in transition state for electron-donating substituents, but N-H bond breaking is more advanced than new N-N bond formation for electron-withdrawing substituents.

  • PDF

Mechanism of DNA Cleavage Induced by Fe2+ Autoxidation

  • Kim, Jong-Moon;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.964-972
    • /
    • 2011
  • This work investigated the difference between $Fe^{2+}$ autoxidation-induced and Fenton-type cleavage of pBR322 plasmid DNA. $^{\cdot}OH$ generation reactions in the absence and presence of $H_2O_2$ under various conditions were also investigated. Although both the $Fe^{2+}$ autoxidation and Fenton-type reactions showed DNA cleavage and $^{\cdot}OH$ generation, there were significant differences in their efficiencies and reaction rates. The rate and efficiency of the cleavage reaction were higher in the absence of 1.0 mM of $H_2O_2$ than in its presence in 20 mM phosphate buffer. In contrast, the $^{\cdot}OH$ generation reaction was more prominent in the presence of $H_2O_2$ and showed a pH-independent, fast initial reaction rate, but the rate was decreased in the absence of $H_2O_2$ at across the entire tested pH range. Studies using radical scavengers on DNA cleavage and $^{\cdot}OH$ generation reactions in both the absence and presence of $H_2O_2$ confirmed that both reactions spontaneously involved the active oxygen species $^{\cdot}OH$, ${O_2}^{\cdot-}$, $^1O_2$ and $H_2O_2$, indicating that a similar process may participate in both reactions. Based on the above observations, a new mechanism for the $Fe^{2+}$ autoxidation-induced DNA cleavage reaction is proposed.

Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology

  • Arachchi, Shanika Jeewantha Thewarapperuma;Kim, Ye-Joo;Kim, Dae-Wook;Oh, Sang-Chul;Lee, Yang-Bong
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ${\Delta}E$ was consequently set as the fifth response factor. In the statistical analyses, determination coefficients ($R^2$) for their absorbance, Hunter's L, a, b values, and ${\Delta}E$ were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, $111^{\circ}C$ reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, $114^{\circ}C$ reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

Response of H-Pile under Lateral Load in Cohesionless Soils (사질토 지반에서 고강도 H-형강 말뚝의 수평거동)

  • 박영호;정현식;이영생;정종홍
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.237-244
    • /
    • 2000
  • Piles are often subjected to both axial and lateral loads. The nonlinear subgrade reaction method is widely used for the design of laterally loaded piles and in this approach the soil reaction is replaced with a series of independent nonlinear Winkler springs. In this study, Laterally loaded high strength H-piles were analyzed using a finite difference solution, and three p-y curve models with different k values(the coefficient of horizontal subgrade reaction, [FL$\^$-3/]) were evaluated using data obtained from various field tests, and another analysis method using Q$\sub$g/ - y$\sub$g/ curve was developed. The results of this analysis were compared with the measured values to assess their applicability.

  • PDF

Optimization for Enzymatic Hydrolysis of Mannitol (만니톨의 효소 가수분해 반응 조건 최적화)

  • Park, Eun-Young;Kim, Yong-Jin;Jeong, Seung-Mi;Lee, Dong-Hoon
    • KSBB Journal
    • /
    • v.28 no.2
    • /
    • pp.65-73
    • /
    • 2013
  • This study aimed to investigate the enzymatic hydrolysis of mannitol using Viscozyme$^{(R)}$ L, Celluclast$^{(R)}$ 1.5 L, Saczyme$^{(R)}$, Novozym$^{(R)}$, Fungamyl$^{(R)}$ 800 L, Driselase$^{(R)}$ Basidiomycetes sp., and Alginate Lyase, and to optimize of reaction conditions for production of reducing sugar. Response surface methodology (RSM) based on central composite rotatable design was used to study effects of the independent variables such as enzyme (1-9% v/w), reaction time (10-30 h), pH (3.0-7.0) and reaction temperature ($30-70^{\circ}C$) on production of reducing sugar from mannitol. The coefficient of determination ($R^2$) of $Y_1$ (yield of reducing sugar by Viscozyme$^{(R)}$ L) and $Y_3$ (yield of reducing sugar by Saczyme$^{(R)}$) for the dependent variable regression equation was analyzed as 0.985 and 0.814. And the p-value of $Y_1$ and $Y_3$ showing 0.000 and 0.001 within 1% (p < 0.01), respectively, was very significant. The optimum conditions for production of reducing sugar with Viscozyme$^{(R)}$ L were 9.0 % (v/w) amount of enzyme, 30.0 hours of reaction time, pH 4.5 and $30.0^{\circ}C$ of reaction temperature, and those with Saczyme$^{(R)}$ were 9.0% (v/w) of amount of enzyme dosage, 30.0 h of reaction time, pH 7.0 and $30.0^{\circ}C$ of reaction temperature, consequently, the predicted reducing sugar yields were 22.5 and 27.9 mg/g-mannitol, respectively.

Effect of Dimethyl Amiloride on the Acrosome Reaction in Mouse Epididymal Sperm in vitro (생쥐 정자의 첨체반응에 미치는 Dimethyl Amiloride의 영향)

  • 계명찬
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.87-93
    • /
    • 1999
  • The possible role of Na$^{+}$/H$^{+}$ antiporter in both the capacitation and the acrosome reaction (AR) was examined in mouse epididymal spermatozoa. Spontaneous acrosome reaction was inhibited by dimethyl amiloride (DMA), a specific inhibitor of Na$^{+}$/H$^{+}$ antiporter, with dose dependent manner. Follicular fluid- or A23l 87-induced acrosome reaction was not inhibited by DMA. It suggests that change in pH$_{i}$ by monovalent cation transport through the Na$^{+}$/H$^{+}$ antiporter is possibly engaged in the capacitation and that agonist- as well as A23l87-induced AR in capacitated sperm might be independent from the Na$^{+}$/H$^{+}$ antiporter. Conclusively, changes in pH$_{i}$ through the Na$^{+}$/H$^{+}$ antiporter might be important for sperm capacitation and it virtually occurs upstream of the $Ca^{2+}$ influx which precedes the acrosome reaction in mouse epididymal spermatozoa.pididymal spermatozoa.

  • PDF

Spectrofluometry of sulfonamides using fluorescamine (Fluorescamine을 이용한 sulfonamide의 형광 분석법)

  • Lim, Jae-young;Han, Su-nam;Lee, Mun-han;Park, Jong-myung
    • Korean Journal of Veterinary Research
    • /
    • v.30 no.1
    • /
    • pp.41-49
    • /
    • 1990
  • These experiments were carried out to develop a novel, simple, and rapid method to determine urinary sulfonamides using fluorescamine by spectrofluorometry. To get optimal conditions for the sulfonamide-fluorescamine reaction, sulfonamides such as sulfamethazine, sulfamerazine, sulfadimethoxine and sulfamonomethoxine, dissolved in buffers with various pH ranges were reacted with various concentrations of fluorescamine. and then, the fluorescence intensity and stability of the fluorophore were measured. To eliminate the interfering substances in urine, the fluorophore in buffers and urine with a definite pH range was extracted with some organic solvents. After then the fluorescence intensity was measured in organic and aquous phases. The results obtained were summarized as follows: 1. The maximal fluorescence of sulfonamides was presented in acidic state, pH 4.5~5.0, at 30 minutes after reaction. 2. The optimal concentration ratio of sulfamethazine and ffuorescamine was more than 1 : 40 in mole. 3. In pH 4.0, the intensity was maximal but was time-dependent, whereas in pH 8.0, the intensity was time-independent. 4. Sulfamethazine-fluorescamine conjugate could be dissolved in some of organic solvents in acidic state such as chloroform, n-butanol, and ethylacetate. 5. Sulfamethazine-flnorescamine conjugate in swine urine coule be extracted with ethylacetate in acidic state, pH 4.0~5.0.

  • PDF

Iron Oxide Coated Sand(ICS)의 중금속 흡착제거 특성

  • 최형진;양재규;장윤영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.379-381
    • /
    • 2003
  • Metal sorption onto the ICS (Iron oxide coated sand) was studied in batch experiments. Heavy metal cations such as Cd, Pb, and Cu, and a metal anion, As, which sporadically exist in mine sites, were tested for the sorptive removal by ICS. In low pH conditions As showed the highest removal efficiency compared to the other metal cations. And the sorption removal of As was apparently pH-independent reaction. However, removal of metal cations increased with pH and above pH 7 most metal cations showed very low soluble concentrations after treatment. Such a high removal ratio of metal cations above the neutral pH appeared predominantly due to precipitation.

  • PDF

Influence of pH on Chelation of BaCl2 and EDTA Using Isothermal Titration Calorimetry (등온적정열량계를 이용한 BaCl2와 EDTA 킬레이션 결합 반응의 pH 영향)

  • Ga Eun Yuk;Ji Woong Chang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.279-284
    • /
    • 2023
  • Isothermal titration calorimetry (ITC) is a useful technique to obtain thermodynamic binding properties such as enthalpy, Gibbs free energy, entropy, and stoichiometry of the chelation reaction. A single independent binding site model was used to evaluate the thermodynamic binding properties in BaCl2 and ethylenediaminetetraacetic acid (EDTA) in Trince and HEPES buffers. ITC enables us to elucidate the binding mechanism and find an optimal chelation condition for BaCl2 and EDTA in the pH range of 7~11. Chelation of BaCl2 and EDTA is a spontaneous endothermic reaction. As pH increased, entropic contributions dominated. The optimal pH range is narrow around pH 9.0, where 1:1 binding between BaCl2 and EDTA occurs.

Interaction Metal Ions with NADH Model Compounds. Cupric Ion Oxidation of Dihydronicotinamides

  • Park, Joon-Woo;Yun, Sung-Hoe;Koh Park, Kwang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.298-303
    • /
    • 1988
  • Kinetic studies on cupric ion ($Cu^{2+}$) oxidation of 1-benzyl- and 1-aryl-1,4-dihydronicotinamides (XNAH) in aqueous solution were performed. In the presence of dioxygen ($O_2$), the reaction followed first order kinetics with respect to both XNAH and $Cu^{2+}$. The oxidation reaction was found to be independent and parallel to the acid-catalyzed hydration reaction of XNAH. The catalytic role of $Cu^{2+}$ for the oxidation of XNAH in the presence of $O_2$ was attributed to $Cu^{2+}/Cu^+$ redox cycle by the reactions with XNAH and $O_2$. The second order rate constants of the Cu2+ oxidation reaction kCu, and acid-catalyzed hydration reaction $k_H$ were strongly dependent on the nature of the substituents in 1-aryl moiety. The slopes of log $k_{Cu}$ vs log $K_H$ and log $k_{Cu}$ vs ${\sigma}_p$ of the substituents plots were 1.64 and -2.2, respectively. This revealed the greater sensitivity of the oxidation reaction rate to the electron density on the ring nitrogen than the hydration reaction rate. A concerted two-electron transfer route involving XNAH-$Cu^{2+}$ complex was proposed for mechanism of the oxidation reaction.