• Title/Summary/Keyword: pH conditions

Search Result 6,348, Processing Time 0.032 seconds

Influence of fly ash and GGBFS on the pH value of cement mortar in different curing conditions

  • Shafigh, Payam;Yousuf, Sumra;Ibrahim, Zainah;Alsubari, Belal;Asadi, Iman
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.419-428
    • /
    • 2021
  • The pH of cement-based materials (CBMs) is an important factor for their durability, sustainability, and long service life. Currently, the use of supplementary cementitious materials (SCMs) is becoming mandatory due to economic, environmental, and sustainable issues. There is a decreasing trend in pH of CBMs due to incorporation of SCMs. The determination of numerical values of pH is very important for various low and high volume SCMs blended cement mortars for the better understanding of different defects and durability issues during their service life. In addition, the effect of cement hydration and pozzolanic reaction of SCMs on the pH should be determined at initial and later ages. In this study, the effect of low and high-volume fly ash (FA) and ground granulated ballast furnace slag (GGBFS) cement mortars in different curing conditions on their pH values has been determined. Thermal gravimetric analysis (TGA) was carried out to support the findings from pH measurements. In addition, thermal conductivity (k-value) and strength activity indices of these cement mortars were discussed. The results showed that pH values of all blended cement mortars were less than ordinary Portland cement (OPC) mortar in all curing conditions used. There was a decreasing tendency in pH of all mortars with passage of time. In addition, the pH of cement mortars was not only dependent on the quantity of Ca(OH)2. The effect of adding SCMs on the pH value of cement mortar should be monitored and measured for both short and long terms.

The effect of precursor solution pH on the energy storage performance of 𝛼-MnO2 cathode for zinc-ion batteries synthesized via hydrothermal method (Zn 이온 배터리용 양극 𝛼-MnO2의 수열 합성 시 전구체 용액의 pH가 에너지 저장 성능에 미치는 영향)

  • Sang-Eun Chun
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.338-347
    • /
    • 2024
  • 𝛼-MnO2 as a cathode material for Zn-ion batteries allows insertion and extraction of Zn ions within its tunnel structure during charge and discharge. The morphology and crystal structure of 𝛼-MnO2 particles critically determine their electrochemical behavior and energy storage performance. In this study, 𝛼-MnO2 was synthesized from precursor solutions under varying pH conditions using a hydrothermal method. The effects of pH values on the morphology, crystal structure, and electrochemical performance were systematically analyzed. The analysis revealed that materials synthesized at higher pH levels exhibited elongated and narrow nanorods with a lower specific surface area. In contrast, those formed at lower pH levels showed shorter, thicker nanorods with a higher specific surface area. This increased surface area at a lower pH enhanced the specific capacitance by providing a greater electrode/electrolyte interfacial area. By contrast, the material synthesized at higher pH conditions demonstrated superior rate capability, attributed to its crystal structure with wider lattice spacings. Wide lattice parameters in the material synthesized at higher pH conditions facilitated easier ion transport than at lower pH levels. Consequently, the study confirms that adjusting the pH of the precursor solution can optimize the electrochemical properties of 𝛼-MnO2 for Zn-ion batteries.

Effects of the microbiological properties and pathogenicity of Photobacterium damselae subsp. damselae under different culture conditions (배양 조건이 Photobacterium damselae subsp. damselae의 미생물학적 성상 및 병원성에 미치는 영향)

  • Kwon, Mun-Gyeong;Cho, Byoung-Youl;Park, Myeong-Ae
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.239-251
    • /
    • 2009
  • The effects of microbiological properties and pathogenicity of Photobacterium damselae subsp. damselae were investigated under different culture conditions, temperature, pH, NaCl and iron concentration on culture media. Favorable conditions for bacterial growth were between 15-30${^{\circ}C}$, pH 5-9, 0-4% NaCl concentration and iron contents of over 10 mM, whereas the bacterial growth was inhibited under iron chelator existence. When P. damselae was cultured in iron-limited tryptic soy broth, total protein concentration of extracellular products, cytotoxic ability of ECPs on cell line, bacterial viability in flounder serum, phospholipase and siderophore activities of ECPs were significantly increased. On the other hand, the activities of P. damselae cultured under iron-added conditions were decreased. In this study, the iron-limited conditions were similar to the host in which iron concentration is low. During infection caused by P. damselae, the conditions could be related to the pathogenesis of the pathogen.

Influence of Different Operational pH Conditions to Microbial Community in Biological Sequencing Batch Phosphorus Removal Process (생물학적 회분식 인 제거 공정에서 pH 영향과 미생물 군집의 변화)

  • Ahn, Johwan;Seviour, Robert
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.459-465
    • /
    • 2013
  • A sequencing batch reactor was operated under different pH conditions to see the influence of pH to microbial community in enhanced biological phosphorus removal (EBPR) systems. Long term influences of different steady-state pH conditions on the microbial community composition were evaluated by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). The shift in populations from polyphosphate-accumulating organisms (PAOs) to Alphaproteobacteria was observed when pH was changed from 7.5 to 7.0. Alphaproteobacteria with the typical morphological traits of tetrad-forming organisms (TFOs) eventually became dominant members. The alphaproteobacterial TFOs were the phenotype expected for glycogen-accumulating organisms (GAOs), which accumulate large amount of glycogen into the cell. The results strongly suggested that low operational pH condition encourages the appearance of the GAOs in EBPR process, significantly reducing the EBPR capacity.

Effect of Environmental pH on End Products, Fermentation Balances and Bioenergetic As-pects of Lactobacillus bulg-aricus in a Glucose-limited “pH Stat” Continuous Culture.

  • Rhee, Sang-Ki;Pack, Moo-Young
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.10a
    • /
    • pp.246.1-246
    • /
    • 1979
  • A glucose-limited “pH-stat” continuous culture study of Lactobacillus bulgaricus NLS-4 in an anaerobic condition showed the marked effects of environmental pH on end products, fermentation blances and bioenergetic aspects of the organism. Lactic acid was the major end product of fermentation with minor products, such as acetic acid, formic acid and ethanol throughout the pH range tested. In acidic conditions below pH 6.5, a typi-cal pattern of homofermentation was revealed whereas in alkaline conditions, the metabolic pattern was changed from homofermentation to heterofermentation and led to acquire much energy. This metabolic change was likely due to the pH-dependent lactate dehydrogenase activity. Molar growth yields (Yglc=35.5-44.4) and YATP, $18.5\pm2.5$ in average which was 80% higher than the value ever postulated seemed to be accounted for less requirement of maintenance energy of the organism in the culture conditions.

  • PDF

The Parameter Analysis of Methane Production in Anaerobic Fermenter (혐기소화조에서 메탄 발생에 영향을 미치는 인자 분석)

  • 최광근;신종철;전현희;김상용;이진원
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.473-478
    • /
    • 2003
  • The purpose of this study is to look for the optimal conditions of methane production. The conditions tested for methane production enhancement were temperature, pH, carbon source, nitrogen source, and inhibitor which can affects methane production. As a result, optimal conditions for methane production were 30$^{\circ}C$, neutral pH, methanol as a carbon source, NH$_4$Cl as a nitrogen source. 2-Bromoethanesulfonic acid was used as an inhibitor which can affects methane production. Existence in broth less than 10mM, inhibited methane production. Organic acid measurements revealed that formic acid exists in broth as majority.

Sorption characteristics of iodide on chalcocite and mackinawite under pH variations in alkaline conditions

  • Park, Chung-Kyun;Park, Tae-Jin;Lee, Seung-Yeop;Lee, Jae-Kwang
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1041-1046
    • /
    • 2019
  • In terms of long-term safety for radioactive waste disposal, the anionic iodide (I-129) with a long half-life ($1.6{\times}10^6yr$) is of a critical importance because this radionuclide migrates in geological media with limited interactions. Various studies have been performed to retard the iodide migration. Recently, some minerals that are likely generated from waste container corrosion, have been suggested to have a considerable chemical interaction with iodide. In this study, chalcocite and mackinawite were selected as candidate minerals for underground corrosion materials, and an iodide sorption experiment were carried out. The experiment was performed under anoxic and alkaline conditions and the pH effects on the iodide sorption were investigated in the range of pH 8 to 12. The results showed that both minerals demonstrated a noticeable sorption capacity on iodide, and the distribution coefficient ($K_d$) decreased as the pH increased in the experimental condition. In addition, when the alkalinity increased higher than a pH of 12, the sorption capacity of both minerals decreased dramatically, likely due to the competition of hydroxy ions with the iodide. This result confirmed that chalcocite was an especially good sorbing media for iodide under alkaline conditions with a pH value of less than 12.

Effects of pH and Salinity on the Cultivated Brown Alga Sargassumfulvellum and Associated Animals (갈조류 양식 모자반(Sargassum fulvellum)과 해적생물에 대한 pH와 염분의 효과)

  • Hwang, Eun-Kyeong;Ha, Dong-Soo;Baek, Jae-Min;Wee, Mi-Young;Park, Chan-Sun
    • ALGAE
    • /
    • v.21 no.3
    • /
    • pp.317-321
    • /
    • 2006
  • The effects pH and salinity on the brown alga Sargassum fulvellum were investigated in the context of the removal of two major associated animals, Caprella scaura and Gammaropsis utinomi. Optimum quantum yield (Fv/Fm) of S. fulvellum was also examined in the same experimental conditions as an index of stress. Experiments on pH and salinity tolerances of the two animal species indicated that mortality was more than 80% at extremes of pH (2, 3, 4, 10, 11, 12) and salinity (0, 3.5, 7, 10, 44 psu) after a 5 min treatment. Lethal time (LT50) from pH 2 to pH 4 was less than 90 sec in C. scaura, and less than 70 sec in G. utinomi. From 0 to 10 psu, LT50 was less than 20 sec in C. scaura and less than 60 sec in G. utinomi. The quantum yield of S. fulvellum was not significantly different from controls within the pH range 4~10, and within the salinity range of 7-40 psu. When exposed to pH and salinity conditions outside these ranges, the effect of these factors on the removal of two animal species was higher, but quantum yield was highly reduced. These results indicate that the optimal conditions for removing the animal species without affecting optimum quantum yield were pH 4-10, and salinities 7-10 psu and 44 psu.

Reaction Conditions and Carbon, Nitrogen Balance in the Course of Microbiological Oxidation of Alkane (ALKANE의 微生物酸化의 反應條件과 炭素 및 窒素平衡)

  • Park Tai Won
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.187-193
    • /
    • 1969
  • As part of an extensive program on the microbiological oxidation of hydrocarbons, reaction conditions and nutrients consumption of candida lipolytica grown on alkane as carbon source were studied. For optimum growth of yeast, the conditions of pH 5, temperature $30^{\circ}C$, carbon number $C_{16}$& $C_{18}$aeration 25.6 1/l/hr, agitation 3000 r.p.m., hydrocarbon concentration 10% were obtained. Carbon and nitrogen balance related to these conditions were also investigated. In the course of this investigation, some significant effects of pH and carbon number of hydrocarbon variation were observed.

  • PDF

The Treatment of Heavy Metal Hydroxides by Crossflow-Microfiltration (정밀여과에 의한 중금속수산화물의 처리)

  • Yoo, Kun-Woo;Seo, Hyung-Joon
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.151-165
    • /
    • 2002
  • In the treatment of the wastewater containing metals($Cu^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Cr^{3+}$) by using batch precipitation and flocculation followed by membrane filtration, permeate flux and removal efficiency were investigated according to by the effect of pH and coagulants, and the type of membranes used and pore size. It was found that it is most effective to use $0.45{\mu}m$-polysulfone membrane and coagulant(PAC) at the conditions of the pH of 10.0~10.5 for the case of copper containing wastewater, $0.1{\mu}m$-PVDF membrane and coagulant(PAC) at the conditions of the pH of 10.0~10.5 for the case of zinc containing wastewater, $0.1{\mu}m$-PVDF membrane and coagulant at the conditions of the pH of 11.0~11.5 for the case of nickel containing wastewater, $0.2{\mu}m$ membrane and coagulant at the conditions of the pH of 8.0~8.5 for the case of chromic containing wastewater, and $0.2{\mu}m{\sim}0.45{\mu}m$ membrane and coagulant at the conditions of the pH of 11.0~11.5 for the case mixture wastewater. The permeate flux could higher as to be used coagulants except for the case of copper containing wastewater.

  • PDF