Influence of Different Operational pH Conditions to Microbial Community in Biological Sequencing Batch Phosphorus Removal Process

생물학적 회분식 인 제거 공정에서 pH 영향과 미생물 군집의 변화

  • Ahn, Johwan (Biotechnology Research Centre, La Trobe University) ;
  • Seviour, Robert (Biotechnology Research Centre, La Trobe University)
  • 안조환 (라트로브대학교 바이오테크놀로지 리서치 센터) ;
  • Published : 2013.07.30

Abstract

A sequencing batch reactor was operated under different pH conditions to see the influence of pH to microbial community in enhanced biological phosphorus removal (EBPR) systems. Long term influences of different steady-state pH conditions on the microbial community composition were evaluated by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). The shift in populations from polyphosphate-accumulating organisms (PAOs) to Alphaproteobacteria was observed when pH was changed from 7.5 to 7.0. Alphaproteobacteria with the typical morphological traits of tetrad-forming organisms (TFOs) eventually became dominant members. The alphaproteobacterial TFOs were the phenotype expected for glycogen-accumulating organisms (GAOs), which accumulate large amount of glycogen into the cell. The results strongly suggested that low operational pH condition encourages the appearance of the GAOs in EBPR process, significantly reducing the EBPR capacity.

Keywords

References

  1. Ahn, J. and Seviour, R. (2011). Influence of Different Operational pH Conditions and Granulation on Enhanced Biological Sequencing Batch Phosphorus Removal, Journal of Korean Society on Water Environment, 27(6), pp. 754-759.
  2. Amann, R., Ludwig, W., and Schleifer, K. H. (1995). Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation, Microbiological Reviews, 59(1), pp. 143-169.
  3. American Public Health Association, American Water Works Association and Water Environment Federation (APHA, AWWA, WEF). (1999). Standard Methods for the Examination of Water and Wastewater, Washington DC.
  4. Beer, M., Kong, Y. H., and Seviour, R. J. (2004). Are Some Putative Glycogen Accumulating Organisms (GAO) in Anaerobic: Aerobic Activated Sludge Systems Members of the ${\alpha}$-Proteobacteria?, Microbiology, 150(7), pp. 2267-2275. https://doi.org/10.1099/mic.0.26825-0
  5. Burow, L. C., Kong, Y., Nielsen, J. L., Blackall, L. L., and Nielsen, P. H. (2007). Abundance and Ecophysiology of Defluviicoccus spp., Glycogen-Accumulating Organisms in Full-Scale Wastewater Treatment Processes, Microbiology, 153(1), pp. 178-185. https://doi.org/10.1099/mic.0.2006/001032-0
  6. Crocetti, G. R., Banfield, J. F., Keller, J., Bond, P. L., and Blackall, L. L. (2002). Glycogen Accumulating Organisms in Laboratory-Scale and Full-Scale Wastewater Treatment Processes, Microbiology, 148(11), pp. 3353-3364. https://doi.org/10.1099/00221287-148-11-3353
  7. Crocetti, G. R., Hugenholtz, P., Bond, P. L., Schuler, A., Keller, J., Jenkins, D., and Blackall, L. L. (2000). Identification of Polyphosphate-Accumulating Organisms and Design of 16S rRNA Directed Probes for Their Detection and Quantification, Applied and Environmental Microbiology, 66(3), pp. 1175-1182. https://doi.org/10.1128/AEM.66.3.1175-1182.2000
  8. Daims, H., Bruhl, A., Amann, R., Schleifer, K. H., and Wagner, M. (1999). The Domain-Specific Probe EUB338 is Insufficient for the Detection of All Bacteria: Development and Evaluation of a more Comprehensive Probe Set, Systematic and Applied Microbiology, 22(3), pp. 434-444. https://doi.org/10.1016/S0723-2020(99)80053-8
  9. Falvo, A., Levantesi, C., Rossetti., S. Seviour R. J., and Tandoi, V. (2001). Synthesis of Intracellular Storage Polymers by Amaricoccus kaplicensis, a Tetrad Forming Bacterium Present in Activated Sludge, Journal of Applied Microbiology, 91(2), pp. 299-305. https://doi.org/10.1046/j.1365-2672.2001.01384.x
  10. Filipe, C. D. M., Daigger, G. T., and Grady, C. P. L. (2001). pH as a Key Factor in the Competition between Glycogen-Accumulating Organisms and Phosphorus-Accumulating Organisms, Water Environment Research, 73(2), pp. 223-232. https://doi.org/10.2175/106143001X139209
  11. Hesselmann, R. P. X., Werlen, C., Hahn, D., van der Meer, J. R., and Zehnder, A. J. B. (1999). Enrichment, Phylogenetic Analysis and Detection of a Bacterium that Performs Enhanced Biological Phosphorus Removal in Activated Sludge, Systematic and Applied Microbiology, 22(3), pp. 454-465. https://doi.org/10.1016/S0723-2020(99)80055-1
  12. Kong, Y., Nielsen, J. L., and Nielsen, P. H. (2005). Identity and Ecophysiology of Uncultured Actinobacterial Polyphosphate-Accumulating Organisms in Full-Scale Enhanced Biological Phosphorus Removal Plants, Applied and Environmental Microbiology, 71(7), pp. 4076-4085. https://doi.org/10.1128/AEM.71.7.4076-4085.2005
  13. Lane, D. J. (1991). 16S/23S rRNA Sequencing, Nucleic Acid Techniques in Bacterial Systematics, E. Stackebrandt and M. Goodfellow (eds), John Wiley and Sons, New York, pp. 115-175.
  14. Liu, W. T., Niesen, A. T., Wu, J. H., Tsai, C. S., Matsuo, Y., and Molin, M. (2001). In Situ Identification of Polyphosphate-and Polyhydroxyalkanoates-Accumulating Traits for Microbial Populations in a Biological Phosphorus Removal Process, Environmental Microbiology, 3(2), pp. 110-122. https://doi.org/10.1046/j.1462-2920.2001.00164.x
  15. Loy, A., Schulz, C., Lucker, S., Schopfer-Wendels, A., Stoecker, K., Baranyi, C., Lehner, A., and Wagner, M. (2005). 16S rRNA Gene-Based Oligonucleotide Microarray for Environmental Monitoring of the Betaproteobacterial Order "Rhodocyclales," Applied and Environmental Microbiology, 71(3), pp. 1373-1386. https://doi.org/10.1128/AEM.71.3.1373-1386.2005
  16. Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleiffer, K. H. (1992). Phylogenetic Oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions, Systematic and Applied Microbiology, 15(4), pp. 593-600. https://doi.org/10.1016/S0723-2020(11)80121-9
  17. Meier, H., Amann, R., Ludwig, W., and Schleifer, K. H. (1999). Specific Oligonucleotide Probes for in Situ Detection of a Major Group of Gram-Positive Bacteria with Low DNA G+C Content, Systematic and Applied Microbiology, 22(2), pp. 186-196. https://doi.org/10.1016/S0723-2020(99)80065-4
  18. Neef, A., Witzenberger, R., and Kampfer, P. (1999). Detection of Sphingomonads and in Situ Identification in Activated Sludge using 16S rRNA-Targeted Oligonucleotide Probes, Journal of Industrial Microbiology and Biotechnology, 23(4-5), pp. 261-267. https://doi.org/10.1038/sj.jim.2900768
  19. Oehmen, A., Zeng, R. J., Yuan, Z. G., and Keller, J. (2005). Anaerobic Metabolism of Propionate by Polyphosphate-Accumulating Organisms in Enhanced Biological Phosphorus Removal Systems, Biotechnology and Bioengineering, 91(1), pp. 43-53. https://doi.org/10.1002/bit.20480
  20. Satoh, H., Ramey, W., Koch, F., Oldham, W., Mino T., and Matsuo, T. (1996). Anaerobic Substrate Uptake by the Enhanced Biological Phosphorus Removal Activated Sludge Treating Real Sewage, Water Science and Technology, 34(1-2), pp. 9-16.
  21. Seviour, R. J., Mino, T., and Onuki, M. (2003). The Microbiology of Biological Phosphorus Removal in Activated Sludge Systems, FEMS Microbiology Reviews, 27(1), pp. 99-127. https://doi.org/10.1016/S0168-6445(03)00021-4
  22. Smolders, G. J. F., van der Meji, J., van Loosdrecht, M. C. M., and Heijnen, J. J. (1994). Stoichiometric Model of the Aerobic Metabolism of the Biological Phosphorus Removal Process, Biotechnology and Bioengineering, 44(7), pp. 837-848. https://doi.org/10.1002/bit.260440709
  23. Tchobanoglous, G., Burton, F. L., and Stensel, H. D. (2004). Wastewater Engineering Treatment and Reuse, McGraw-Hill, Singapore, pp. 611-616.
  24. Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K. H. (1994). Development of an rRNA-Targeted Oligonucleotide Probe Specific for the Genus Acinetobacter and its Application for in Situ Monitoring in Activated Sludge, Applied and Environmental Microbiology, 60(3), pp. 792-800.
  25. Wong, M. T., Tan, F. M., Ng, W. J., and Liu, W. T. (2004). Identification and Occurrence of Tetrad-Forming Alphaproteobacteria in Anaerobic-Aerobic Activated Sludge Processes, Microbiology, 150(11), pp. 3741-3748. https://doi.org/10.1099/mic.0.27291-0
  26. Wong, M. T., Mino, T., Seviour, R. J., Onuki, M., and Liu, W. T. (2005). In Situ Identification and Characterization of the Microbial Community Structure of Full-Scale Enhanced Biological Phosphorous Removal Plants in Japan, Water Research, 39(13), pp. 2901-2914. https://doi.org/10.1016/j.watres.2005.05.015
  27. Wong, M. T. and Liu, W. T. (2007). Ecophysiology of Defluviicoccus-Related Tetrad-Forming Organisms in an Anaerobic-Aerobic Activated Sludge Process, Environmental Microbiology, 9(6), pp. 1485-1496. https://doi.org/10.1111/j.1462-2920.2007.01267.x
  28. Zeng, R. J., van Loosdrecht, M. C. M., Yuan, Z. G., and Keller, J. (2003). Metabolic Model for Glycogen-Accumulating Organisms in Anaerobic/Aerobic Activated Sludge Systems, Biotechnology and Bioengineering, 81(1), pp. 92-105. https://doi.org/10.1002/bit.10455
  29. Zilles, J. L., Peccia, J., Kim, M. W., Hung, C. H., and Noguera, D. R. (2002). Involvement of Rhodocyclus-Related Organisms in Phosphorus Removal in Full-Scale Wastewater Treatment Plants, Applied and Environmental Microbiology, 68(6), pp. 2763-2769. https://doi.org/10.1128/AEM.68.6.2763-2769.2002