• Title/Summary/Keyword: pH buffering capacity

Search Result 103, Processing Time 0.03 seconds

A Study on Remediation of Explosives-Contaminated Soil/Ground Water using Modified Fenton Reaction and Fenton-like Reaction (Modified Fenton Reaction과 Fenton-like Reaction을 이용한 화약류 오염 토양/지하수의 처리에 관한 연구)

  • Hur, Jung-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.153-160
    • /
    • 2005
  • There have been large areas of soil contaminated with high levels of explosives. For this experimental work, 2,4,6-trinitrotoluene (TNT) was tested as a representative explosive contaminant of concern in both aqueous and soil samples and its removal was evaluated using three different chemical treatment methods: 1) the classical Fenton reaction which utilizes hydrogen peroxide ($H_2O_2$) and soluble iron at pH less than 3; 2) a modified Fenton reaction which utilizes chelating agents, $H_2O_2$, and soluble iron at pH 7; and 3) a Fenton-like process which utilizes iron minerals instead of soluble iron and $H_2O_2$, generating a hydroxyl radical. Using classic Fenton reaction, 93% of TNT was removed in 20 h at pH 3 (soil spiked with 300 mg/L of TNT, 3% $H_2O_2$ and 1mM Fe(III)), whereas 21% removed at pH 7. The modified Fenton reaction, using nitrilotriacetic acid (NTA), oxalate, ethylenediaminetetraacetic acid (EDTA), acetate and citrate as representative chelating agents, was tested with 3% $H_2O_2$ at pH 7 for 24 h. Results showed the TNT removal in the order of NTA, EDTA, oxalate, citrate and acetate, with the removal efficiency of 87%, 71%, 64%, 46%, and 37%, respectively, suggesting NTA as the most effective chelating agent. The Fenton-like reaction was performed with water contaminated with 100 mg/L TNT and soil contaminated with 300 mg/L TNT, respectively, using 3% $H_2O_2$ and such iron minerals as goethite, magnetite, and hematite. In the goethite-water system, 33% of TNT was removed at pH 3 whereas 28% removed at pH 7. In the magnetite-water system, 40% of TNT was removed at pH 3 whereas 36% removed at pH 7. In the hematite-water system, 40% of TNT was removed at pH 3 whereas 34% removed at pH 7. For further experiments combining the modified Fenton reaction with the Fenton-like reaction, NTA, EDTA, and oxalate were selected with the natural iron minerals, magnetite and hematite at pH 7, based on the results from the modified Fenton reaction. As results, in case magnetite was used, 79%, 59%, and 14% of TNT was removed when NTA, oxalate, and EDTA used, respectively, whereas 73%, 25%, and 19% removed in case of hematite, when NTA, oxalate, and EDTA used, respectively.

MODULATION OF INTRACELLULAR pH BY $Na^+/H^+$ EXCHANGER AND $HCO_3^-$ TRANSPORTER IN SALIVARY ACINAR CELLS ($Na^+/H^+$ exchanger와 $HCO_3^-$ transporter에 의한 흰쥐 타액선 선세포내 pH 조절)

  • Park, Dong-Bum;Seo, Jeong-Taeg;Sohn, Heung-Kyu;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.352-367
    • /
    • 1998
  • Intracellular pH (pHi) plays an important role in the regulation of cellular processes by influencing the acitivity of various enzymes in cells. Therefore, almost every type of mammalian cell possesses an ability to regulate its pHi. One of the most prominent mechanisms in the regulation of pHi is $Na^+/H^+$ exchanger. This exchanger has been known to be activated when cells are stimulated by the binding of agonist to the muscarinic receptors. Therefore, the aims of this study were to compare the rates of $H^+$ extrusion through $Na^+/H^+$ exchanger before and during muscarinic stimulation and to investigate the possible existence of $HCO_3^-$ transporter which is responsible for the continuous supply of $HCO_3^-$ ion to saliva. Acinar cells were isolated from the rat mandibular salivary glands and loaded with pH-sensitive fluoroprobe, 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein(BCECF), for 30min at room temperature. Cells were attached onto the coverglass in the perfusion chamber and the changes in pHi were measured on the iverted microscope using spectrofluorometer. 1. By switching the perfusate from $HCO_3^-$-free to $HCO_3^-$-buffered solution, pHi decreased by $0.39{\pm}0.02$ pH units followed by a slow increase at an initial rate of $0.04{\pm}0.007$ pH units/min. The rate of pHi increase was reduced to $0.01{\pm}0.002$ pH units/min by the simultaneous addition of 1 mM amiloride and $100{\mu}M$ DIDS. 2. An addition and removal of $NH_4^+$ caused a decrease in pHi which was followed by an increase in pHi. The increase of pHi was almost completely blocked by 1mM amiloride in $HCO_3^-$-free perfusate which implied that the pHi increase was entired dependent on the activation of $Na^+/H^+$ exchanger in $HCO_3^-$-free condition. 3. An addition of $10{\mu}M$ carbachol increased the initial rate of pHi recovery from $0.16{\pm}0.01$ pH units/min to $0.28{\pm}0.03pH$ units/min. 4. The initial rate of pHi decrease induced by 1mM amiloride was also increased by the exposure of the acinar cells to $10{\mu}M$ carbachol ($0.06{\pm}0.008pH$ unit/min) compared with that obtained before carbachol stimulation ($0.03{\pm}0.004pH$ unit/min). 5. The intracellular buffering capacity ${\beta}1$ was $14.31{\pm}1.82$ at pHi 7.2-7.4 and ${\beta}1$ increased as pHi decreased. 6. The rate of $H^+$ extrusion through $Na^+/H^+$ exchanger was greatly enhanced by the stimulation of the cells with $10{\mu}M$ carbachol and there was an alkaline shift in the activity of the exchanger. 7. An intrusion mechanism of $HCO_3^-$ was identified in rat mandibular salivary acinar cells. Taken all together, I observed 3-fold increase in $Na^+/H^+$ exchanger by the stimulation of the acinar cells with $10{\mu}M$ carbachol at pH 7.25. In addition, I have found an additional mechanism for the regulation of pHi which transported $HCO_3^-$ into the cells.

  • PDF

Risk Mitigation Measures in Arsenic-contaminated Soil at the Forest Area Near the Former Janghang Smelter Site: Applicability of Stabilization Technique and Follow-up Management Plan ((구)장항제련소 주변 송림숲 등 식생지역에서의 비소오염토양 위해도 저감 조치: 안정화 공법 적용성 평가 및 사후관리 계획)

  • An, Jinsung;Yang, Kyung;Kang, Woojae;Lee, Jung Sun;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.1-11
    • /
    • 2017
  • This study was conducted to investigate the performance of four commercial chemical agents in stabilizing arsenic (As) in soil at the forest area near the former Janghang smelter site. After amending the stabilizing agents (A, B, C, and D) into As-contaminated soil samples, synthetic precipitation leaching procedure (SPLP) and solubility bioavailability research consortium (SBRC)-extractable As concentrations significantly decreased except for agent D, which is mainly composed of fly ash and calcium carbonate. Increase of SPLP and SBRC-extractable As concentrations in four soil samples (S1, S2, S3, and J2) was attributed to desorption of As adsorbed on iron oxides due to high pH generated by agent D. It is therefore necessary to consider application conditions according to soil characteristics such as pH and buffering capacity. Results of sequential extraction showed that readily extractable fractions of As in soil (i.e., sum of $SO_4-$ and $PO_4-extractable$ As in soil) were converted into non-readily extractable fractions by amending agents A, B, and C. Such changes in the As distribution in soil resulted in the decrease of SPLP and SBRC-extractable As concentration. A series of follow-up monitoring and management plan has been suggested to assess the longevity of the stabilization treatments in the site.

The Review of Metabolic Acidosis During Exercise (운동 시 대사적 산성화에 관한 고찰)

  • Yoon, Byung-Kon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1433-1441
    • /
    • 2018
  • The development of acidosis during intense exercise has traditionally been explained by the increased production of lactic acid which causes the release of a proton and the formation of the acid salt sodium lactate. Through this explanation, when the rate of lactate production is high enough to exceed cellular proton buffering capacity, cellular pH is decreased. This biochemical process has been termed lactic acidosis. This belief has been an interpretation that lactate production causes acidosis and fatigue during intense exercise. However, this review provides clear evidence that there is no biochemical support for lactate production causing acidosis and fatigue. Metabolic acidosis is caused by an increased reliance on nonmitochondrial ATP turnover. Lactate production is essential for muscle to produce cytosolic $NAD^+$ to support continued ATP regeneration from glycolysis. In addition, Lactate production consumes protons. Although lactate accumulation can be a good indirect indicator for decreased cellular and blood pH, that is not direct causing acidosis.

The Effects of the Interaction between Precipitation and Tree Species on the Chemical Properties of Throughfall and Stemflow (강우(降雨)와 식생(植生)의 상호작용(相互作用)이 수관통과우(樹冠通過雨) 및 수간류(樹幹流)의 화학적(化學的) 성질변화(性質變化)에 미치는 영향(影響))

  • Joo, Yeong-Teuk;Jin, Hyun-O;Son, Yo-Hwan;Oh, Jong-Min;Jung, Duk-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.149-156
    • /
    • 1999
  • This research was carried out to investigate the effects of the different tree species(Q. spp., L. leptolepis and P. koraiensis) about the chemical properties of throughfall and stemflow, to purify the acid rain at Kyung Hee Univ. experimental forest, Gwangju-gun, Kyunggi-do. The water quality of the precipitation, throughfall and stemflow in each forest stands were analyzed chemically. The throughfall pH ranges were Q. spp.(pH 4.96-6.34), L. leptolepis(pH 3.96-6.41) and P. koraiensis(pH 4.11-6.36), and the stemflow pH ranged Q. spp.(pH 4.33-6.05), L. leptolepis(pH 3.59-6.09) and P. koraiensis(pH 3.60-6.13). pH values of throughfall and stemflow to the precipitation were Q. spp. higer than L. leptolepis and P. koraiensis, while distribution range was small. Therefore, buffering capacity about the precipitation in the tree species trended Q. spp. bigger than L. leptolepis and P. koraiensis. Nearly all concentration of dissolved elements were precipitation${\leq}$throughfall${\leq}$stemflow. The cation ($Ca^{2+}$, $Mg^{2+}$, $K^+$ and $NH_4{^+}$), and anion($Cl^-$ and $NO_3{^-}$) were increased. Especially the concentration of $Mg^{2+}$, $K^+$, $NH_4{^+}$ and $Cl^-$ were noticeable. In comparing concentration of dissolved elements of throughfall with each tree species, $Ca^{2+}$ concentration was Q. spp.$NH_4{^+}$ was Q. spp.

  • PDF

Effects of Sulfur Dioxide on Pigments, Frotein Content and Photosystem II Activity of Barley and Corn Leaves (보리와 옥수수 잎의 색소, 단백질 함량 및 관계II 활성에 미치는 ${SO}^2$의 영향)

  • 정화숙
    • Journal of Plant Biology
    • /
    • v.25 no.3
    • /
    • pp.135-151
    • /
    • 1982
  • This investigation was carried out to clarify the changes of pigments and soluble protein, and photosystem II activity in the leaves of barley (${SO}_2$-sensitive) and corn (${SO}_2$-resistant) seedlings induced by the ${SO}_2$ fumigation (10, 50ppm). The pH changes of the leaf extract, the content of sulfite and sulfate, the activities of catalase, peroxidase, and polyphenoloxidase were compared in the leaves of barley and corn seedlings induced by ${SO}_2$ fumigation. The results are summarized as follows: An appreciable effect of pH change of leaf extract by ${SO}_2$ fumigation was observed in barley leaves (pH 6.10 to 5.18), but only a small change occurred in corn leaves (pH 5.66 to 5.50). The same pattern of pH changes was recorded when the solution of 0.2N HCl was added to leaf extract, providing lower buffering capacity of the barley leaves than corn leaves. After 2 hours of exposure to 10 ppm ${SO}_2$, the contents of ${SO}^{2-}_3$ and ${SO}^{2-}_4$ were increased in barley leaves, while only ${SO}^{2-}_4$ increased in corn leaves. After fumigation with 10ppm ${SO}_2$ for 2 hours, barley leaves showed significant decreases in activities of catalase, to 17% peroxidase, to 58%, and polyphenoloxidase, to 88%. Corn leaves showed increases in activities of peroxidase, to 136%, and polyphenoloxidase, to 128%. Absorption spectra of pigments obtained from ${SO}_2$-fumigated leaves were gradually decreased with the fumigation time increases, but the decrease was more significant in barley leaves. Fumigation with 50ppm ${SO}_2$ for 2 hours induced the greatest decomposition in carotenoid, followed by chlorophyll a and then chlorophyll b in barley leaves. The ratio of chlorophyll a/b was decreased from 4.1 to 3.6 in barley leaves, but in corn leaves it was maintained almost a constant level(4.9-4.8). The rate of decomposition of chlorophyll and carotenoid in corn leaves was very slow than those in the barley leaves. Fumigation with 50 ppm ${SO}_2$ for 2 hous, decreased the protein content of barley leaves to 59%, and that of corn leaves to 89%, and the extent of decrease in protein content was greater than that of pigments in barley and corn leaves. The rate of DCIP9dichlorophenol indophenol) photoreduction in ${SO}_2$-fumigated leaves was decreased to 18 and 67% in barley and corn leaves, respectively. However, DCIP photoreduction was considerably recovered about 32 and 92% with the addition of DPC(diphenylcarbazide) as an exogenous electron donor in barley and corn leaves, respectively.

  • PDF

Physicochemical Properties of Various Blends of Peatmoss and Perlite and the Selection of Rooting Media for Different Growing Seasons (다양한 종류의 피트모스와 펄라이트 혼합에 따른 물리·화학성 변화와 계절별 육묘를 위한 상토 선발)

  • Shim, Chang Yong;Kim, Chang Hyeon;Park, In Sook;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.886-897
    • /
    • 2016
  • The physical properties of rooting media for the establishment of plugs in a greenhouse are modified according to variations in the greenhouse environment throughout the season. In this study, we established a standard for rooting media for the production of plug seedlings for each growing season (summer, winter and spring fall). Eight types of peatmoss (PM) and 4 types of perlite (PL) commonly used in Korea were collected and blended with the ratio of 7 parts PM to 3 parts PL (v/v) to make 32 different rooting media blends. We determined the total porosity (TP), container capacity (CC), air-filled porosity (AFP), pH, and electrical conductivity (EC) of the 32 media blends, and 6 media blends were selected for seasonal use. We also conducted additional analyses for plant easily available water (EAW), buffering water (BW), cation exchange capacity (CEC), and nutrient contents in the 6 media blends. The TP, CC, and AFP of the 32 media blends ranged from 64.7 to 96.0%, 42.9 to 90.1%, and 1.3 to 27.8%, respectively, indicating that the physical properties were strongly influenced by the type of PM and PL. The pH and EC of the PMs ranged from 2.96 to 3.81 and 0.08 to $0.47dS{\cdot}m^{-1}$, respectively. However, after blending the PM with the PL the pH was raised and the EC was lowered The media blends selected for the summer growing season were Blonde Golden peatmoss (BG) + No. 1 perlite size < 1 mm (PE1) and Latagro 0-10 mm (L1) + No. 2 perlite size 1-2 mm (PE2). These two media blends had 89.8-90.9% of TP, 80.8-81.3% of CC, and 9.0-9.7% of AFP. The media blends selected for the winter growing season were Sfagnumi Turvas (ST) + PE2 and Latagro 20-40 mm (L3) + PE2. These media blends had 79.9-86.7% of TP, 60.4-74.9% of CC, and 11.8-19.6% of AFP. The TP, CC, and AFP of two media blends, BG + No.3 perlite 2-5 mm (PE3) and Orange peatmoss (O) + PE3, selected for the spring and fall growing seasons, respectively, were 85.2-87.3%, 77.9%, and 7.4-9.4%, respectively. The percentage of EAW of the media blends selected for the spring, summer, and winter growing seasons ranged from 24.2-24.9%, 22.0-28.6%, and 18.0-21.8%, respectively, but the percentages of BW were not significantly different among the selected root media blends. The pH, EC, and CEC of the 6 selected media blends ranged from 3.11-3.97, $0.06-0.26dS{\cdot}m^{-1}$, and $97-119meq{\cdot}100g^{-1}$, respectively.

Characteristics of Sulfuric Acid Neutralization by Geomedia from Korea with Relevance to Chemical Spill Accidents (사고 누출 황산의 국내 지질매체 반응 특성)

  • Lee, Yoonho;Hyun, Sung Pil;Moon, Hee Sun;Shin, Doyun;Lee, Eunhee;Yoo, Jae-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.249-258
    • /
    • 2019
  • Acid spill accidents are frequently occurring in Korea with increasing production, use, storage, and transport of acids, accompanying industrialization and economic growth. The acids introduced to the subsurface environments would eventually be neutralized by reactions with geomedia. However, the spatial and temporal extent to which the spilled acids would affect will be dependent on the characteristics of the geomedia exposed to the acids. In this work, sulfuric acid, the most used acid in Korea, was reacted with a set of model geomedia representative of the geology of Korea. The buffering capacity of the model geomedia was determined through batch-type experiments using pH changes as an indicator. X-ray diffraction was used to identify the mineral phases contributing to the acid neutralization. The results showed that sandstone had the largest acid neutralization capacity among the tested geomedia, while kaolinite had the smallest. The findings of this study would contribute to quantitatively assessing the impact of spilled acids on geomedia and hence to predicting the vulnerability of geomedia to the spilled acid.

Development of Root Media Containing Pine Bark for Cultivation of Horticultural Crops (소나무 수피를 포함한 원예작물 재배용 혼합상토의 개발)

  • Park, Eun Young;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.499-506
    • /
    • 2014
  • This research was conducted to develop root media containing ground and aged pine bark (GAPB) and ground and raw pine bark (GRPB). After analysis of physico chemical properties, the pine barks were blended with peat moss (PM) or coir dust (CD) in various ratios to formulate 12 root media. Then, two out of 12 root media were chosen based on the physical properties for further experiments. The pre-planting nutrient charge fertilizers (PNCF) were incorporated into two root media and chemical properties were analysed again. The total porosity (TP), container capacity (CC), and air-filled porosity (AFP) of GAPB were 78.7%. 39.4%, and 38.3%, respectively, while those of GRPB were 74.7%, 41.2%, and 33.4%, respectively. The percentage of easily available water (EAW, from CC to 4.90 kPa tension) and buffering water (BW, 4.91-9.81 kPa tension) in GAPB were 12.7% and 8.5%, respectively, which were a little lower than the 13.5% and 8.8% in GRPB. The pH and EC were not different significantly, but cation exchange capacity was different between the two pine barks (GAPB: pH 5.26, EC $0.61dS{\cdot}m^{-1}$, CEC $15.7meq{\cdot}100g^{-1}$; GRPB: pH 5.19, EC $0.32dS{\cdot}m^{-1}$, CEC $9.32meq{\cdot}100g^{-1}$). The concentrations of exchangeable cations in GAPB were Ca 0.32, K 0.05, Mg 0.27 and $0.12cmol+{\cdot}kg^{-1}$, whereas those in GRPB were Ca 0.28, K 0.08, Mg 0.25 and $0.09cmol+{\cdot}kg^{-1}$. The concentrations of $PO_4$-P, $NH_4$-N and $NO_3$-N were 485.8, 0.62 and $0.91mg{\cdot}L^{-1}$ in GAPB and 578, 1.00 and $0.82mg{\cdot}L^{-1}$ in GRPB, respectively, when those were analyzed in the solution of the saturated paste. The TP, CC and AFP in the two selected media were 89.3 and 76.3, and 13.0% in PM+GAPB (8:2, v/v) and 88.2, 68.2 and 20.0% in CD+GRPB (8:2), respectively. The pHs and ECs were 3.8 and $0.24dS{\cdot}m^{-1}$ in PM+GAPB which were a little lower than 5.8 and $0.65dS{\cdot}m^{-1}$ in CD+GRPB. However, the pHs analysed before and after incorporation of PNCF in the two root media did not show large differences. This is because the solubility of dolomitic lime is very low, and the pH it is expected to rise gradually when crops are cultivated int he root media. The information obtained in this study should facilitate effective formulation of root media containing pine bark.

Effects of Aspergillus oryzae Inclusion on Corn Silage Fermentation

  • Chiou, Peter Wen-Shyg;Ku, Hsiao-Che;Chen, Chao-Ren;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1568-1579
    • /
    • 2001
  • This study is aimed at evaluating the effect of Aspergillus oryzae fermentation extract (AFE) on corn silage fermentation characteristics. Trial included two groups of treatments, with or without AFE inclusion in corn ensilage. Sixty corn silage containers, including two treatments with thirty replicates each, were processed in a laboratory scale mini-silo of 21 cm radius by 45 cm height. Three replicate containers were opened and sampled for analysis at 0, 0.5, 1, 2, 3, 4, 6, 10, 18 and 34 days after being ensiled. One silage container from each treatment was installed with a remote controlled electronic thermometer to record the temperature changes. Analysis included silage temperature, pH, fermentation acids, the water-soluble carbohydrates and chemical compositions and the silage protein fractions. Results showed that on the first day, the temperature of the ensiled corn was slightly higher than room temperature, but returned to room temperature on the second day. The pH and concentrations of WSC, ADF, lignin and acetic acid in the AFE treated silage were significantly lower than the control groups (p<0.05). The lactic acid and crude protein on the other hand were significantly higher in the AFE treated silage as compared to the control (p<0.05) at the end of the ensilage period. The DM content was significantly higher (p<0.05) whereas the butyric acid content of the AFE treated silage was significantly lower (p<0.05) than the control at the end of the 34 day ensilage period. Titratable acid and buffering capacity in the corn silage were not significantly different between treatment groups (p>0.05). Ammonia N concentration in the AFE treated silage showed a trend of decrease (p>0.05). NPN and the protein fraction A in both groups increased during the conservation period, but fraction A in the AFE treated corn silage was significantly higher than the control silage (p<0.05). During the conservation period, the AFE treated corn silage showed a trend toward a decrease in fractions $B_1$, $B_3$ and C (p<0.05). The protein fraction B2 showed a trend toward increase in the control group and an inconsistent trend in the AFE treated silage during the ensiling period. The AFE treated silage showed a better Flieg score over the control silage (97 vs. 75) as calculated from the concentrations of lactic acid, acetic acid and butyric acid.