• Title/Summary/Keyword: pH저감제

Search Result 63, Processing Time 0.026 seconds

Study on Performance of pH Reducing Agent Applied for Wet Process of Recycled Aggregate (습식 순환골재의 생산공정에 적용 가능한 pH 저감제의 성능 검토)

  • Choi, Jung-Gu;Lee, Gun-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.366-373
    • /
    • 2015
  • Construction waste is recycled and used for the efficient and eco-friendly disposal of construction waste increasing due to reconstruction and redevelopment project and so on. There is recycled aggregate as a typical case. And this recycled aggregate shows strong alkalinity due to calcium hydroxide, and causes many environmental problems. Therefore, this is a study on reduction in the strong alkalinity of recycled aggregate by using sodium phosphate based ammonium in order to reduce the pH of recycled aggregate. Besides, a possibility that a pH reducing agent of recycled aggregate could be applied to a site was evaluated. As a result, it was possible to verify that pH decreased as the percentage of pH reducing agent increased. It is thought that the pH reducing agent can be applied to a site by methods such as immersion and spray using the pH reducing agent in the process of producing recycled aggregates.

Bioremediation Efficiency of Oil-Contaminated Soil using Microbial Agents (토양미생물 복원제를 이용한 유류로 오염된 토양의 복원)

  • Hong, Sun-Hwa;Lee, Sang-Min;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Oil pollution was world-wide prevalent treat to the environment, and the physic-chemical remediation technology of the TPH (total petroleum hydrocarbon) contaminated soil had the weakness that its rate was very slow and not economical. Bioremediation of the contaminated soil is a useful method if the concentrations are moderate and non-biological techniques are not economical. The aim of this research is to investigate the influence of additives on TPH degradation in a diesel contaminated soil environment. Six experimental conditions were conduced; (i) diesel contaminated soil, (ii) diesel contaminated soil treated with microbial additives, (iii) diesel contaminated soil treated with microbial additives and the mixture was titrated to the end point of pH 7 with NaOH, (iv) diesel contaminated soil treated with microbial additives and accelerating agents and (v) diesel contaminated soil treated with microbial additives and accelerating agents, and the mixture was titrated to the end point of pH 7 with NaOH. After 10 days, significant TPH degradation (67%) was observed in the DSP-1 soil sample. The removal of TPH in the soil sample where microbial additives were supplemented was 38% higher than the control soil sample during the first ten days. The microbial additives were effective in both the initial removal rate and relative removal efficiency of TPH compared with the control group. However, various environmental factors, such as pH and temperature, also affected the activities of microbes lived in the additives, so the pH calibration of the oil-contaminated soil would help the initial reduction efficiency in the early periods.

Material Properties of Ultra Rapid Hardening Mortar for Repairing Sewage Treatment Concrete Pipes (콘크리트 하수관거 보수용 초속경 수중불분리 모르타르의 재료적 특성)

  • Lee, Byungjae;Lee, Sunmok;Bang, Jin-wook;Kim, Yun-yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.57-62
    • /
    • 2020
  • Among the sewage pipes installed in Korea, the length of concrete pipes exceeding 20 years is 66,334 km (42.5%). Deteriorated concrete sewer pipes need to be repaired due to the leakage of internal sewage, which causes problems such as sink holes by expanding the cavity around the pipeline. In this study, we tried to apply anti-washout underwater mortar with ultra rapid hardening cement and segregation reducing agent to sewage pipe repair. As a result of the setting time test, the final set time was delayed by up to 172% by incorporating segregation reducing agent. In the test for measuring the degree of mortar segregation in water, it was measured at pH 12 or less under all mixing conditions. In addition, the suspension amount was measured to be 50 mg / l or less to satisfy the KCI-AD102 standard by incorporating a segregation reducing agent. In terms of the average value of mortar compressive strength, by incorporating segregation reducing agent, the strength of the specimens produced in air was more than 80% of that of the specimens produced in water. Conversely, the bond strengths of the specimens produced in water were measured to be higher than those of the specimens produced in air. Water resistance was evaluated by measuring water absorption and water permeability. Water absorption and water permeability were reduced by 42.6% and 36.6%, respectively, by mixing segregation reducing agent.

Comparison of the High Concentration Calcium Chloride(CaCl2) Salt Reduction Effect of Soil Amendment Agent and Planting Pennisetum alopecuroides (토양개량제와 수크령 식재에 따른 고농도 염화칼슘 염분저감 효과 비교)

  • Yang, Ji;Park, Jae-Hyeon;Yoon, Yong-Han;Ju, Jin-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.345-354
    • /
    • 2020
  • The purpose of this study was to investigate the effects of soil amendment treatments, such as hydroball, and active carbon, and planting Pennisetum alopecuroides for reducing calcium chloride (CaCl2) of soil leachate and the growth of Pennisetum alopecuroides. The experiment planted Pennisetum alopecuroides in a plastic pot with a diameter of 10 cm and a height of 9 cm in a greenhouse April-October 2018. The experimental group comprised six treatments, including Non-treatment (Cont.), Hydroball (H), Active carbon (AC), planting Pennisetum alopecuroides (P), hydroball + planting Pennisetum alopecuroides (H + P), and active carbon + planting Pennisetum alopecuroides (AC + P). The dissolution of the CaCl2 concentration 200ml of 10g/L was irrigated once every two weeks. We measured the growth (plant height, leaf length, leaf width, number of leaves), EC, pH, and exchangeable cations (K+, Ca2+, Na+, and Mg2+) according to the high concentration of CaCl2 in the plant and soil leachate. In a treatment with the 'hydroball' amendment, the soil leachate electrical conductivity (EC), and the cation exchangeable were decreased more than those of the control, while the growth of Pennisetum alopecuroides relative growth rate(RGR) increased. Overall, application with the hydroball amendment added the planting of Pennisetum alopecuroides improved the salt reduction effect more than the control group. These results indicate that the application of the soil amendment agent hydroball was suitable soil amendments in accordance with the high concentration of calcium chloride (CaCl2). Also, Planting Pennisetum alopecuroides is expected to be appropriate for salt-tolerant plant for soil affected by deicing salt agents.

Study on the Reactivity of Sodium Phosphate Ammonium Chloride pH Reduction Agents (인산나트륨계 염화암모늄 pH저감제의 반응성 검토)

  • Shin, Ki-Don;Gao, San;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.105-106
    • /
    • 2017
  • Previous studies have confirmed the performance of pH reduction agents using liquid sodium phosphate based ammonium chloride as a pH reduction agent. In this study, the pH reduction performance considering economical and applicability as a practical stage and the property change analysis for the identification of the reaction mechanism of the pH reduction agent were carried out. As a result, the pH reduction performance at a low rate of the pH reducing agent was confirmed. The specific gravity of CaO decreased significantly after XRF analysis. It is also believed that this reduces the amount of Ca(OH)2 produced and contributes to pH reduction.

  • PDF

Catalytic Nitrate Reduction in Water over Nanosized TiO2 Supported Pd-Cu Catalysts (나노 크기의 타이타니아 담체를 활용한 Pd-Cu 촉매의 수중 질산성 질소 저감 반응에의 적용)

  • Kim, Min-Sung;Lee, Jiyeon;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • In this study, we synthesized $TiO_2$ supports with nanosized crystalline structure by solvothermal method and prepared $TiO_2$ supported Pd-Cu catalysts. It was shown that the crystalline size of $TiO_2$ support in the catalyst influenced on the catalytic activity of nitrate reduction in water. The catalyst with the smaller crystalline size of $TiO_2$ support presented faster nitrate reduction rate, but had low nitrogen selectivity due to high pH environment of reaction medium during the reaction. Through injection of carbon dioxide as a pH buffer, the nitrogen selectivity increased by about 60%. Furthermore, we investigated that the relationships between the catalytic performance and the physicochemical properties of the prepared catalysts characterized by $N_2$ adsoprtion-desorption, X-ray diffraction (XRD), $H_2$-temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS).

The Effect of Some Amendments to Reduce Ammonia during Pig Manure Composting (몇 가지 처리제의 첨가에 의한 돈분의 퇴비화 과정 중 암모니아 발생 저감 효과)

  • Joo, Jin-Ho;Kim, Dae-Hoon;Yoo, Jae-Hong;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.269-273
    • /
    • 2007
  • Occurrence of malodor could cause adverse impacts on human health and increase public interest. Therefore, scientific methods to decrease odor is required. Endeavor to decrease odor from compost however has not fully been successful. The purpose of this research is assessment of some amendments to reduce $NH_3$ from immature composts. Calcium hydroxide was applied to composts due to it's characteristics to increase pH. Activated carbon and zerovalent iron (ZVI) were selected because of their adsorption properties. The research results were as follows: Calcium hydroxide, activated carbon, zerovalent iron increased the composting temperature above $60^{\circ}C$. The addition of calcium hydroxide, activated carbon, and ZVI to compastry process increased pH 8.6 - 8.8 from $1^{st}$ day to $14^{th}$ day. During the 14 days of composting, addition of calcium hydroxide, activated carbon and ZVI changed EC from $2.15-0.66dS\;m^{-1}$, $1.48-1.11dS\;m^{-1}$, respectively and $1.77-0.68dS\;m^{-1}$. The difference in EC of the compost was due to irregularities of samples. Organic matter in the compost decreased through out theexcept control. The $NH_4-N/NO_3-N$ ratio of all experimental compost increased through the process. The addition of activated carbon, calcium hydroxide and ZVI decreased $NH_3$ from 0.1ppm, 0.7ppm and 1.7ppm more than the control (pig manure and sawdust), 9.3ppm, in 30 days of composting. In conclusion, odor from prematured compost decreased by addition of chemicals like calcium hydroxide, activated carbon, zerovalent iron. Moreover, use of these $NH_3$ reducers alone or together combined at different periods of composting etc. could decrease $NH_3$.

Effects of pH-Eh on Natural Attenuation of Soil Contaminated by Arsenic in the Dalchen Mine Area, Ulsan, Korea (비소로 오염된 달천광산 토양의 자연저감 능력에 대한 pH-Eh영향)

  • Park Maeng-Eon;Sung Kyu-Youl;Lee Minhee;Lee Pyeong-Koo;Kim Min-Chul
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.513-523
    • /
    • 2005
  • The contamination of soils and groundwaters in the Dalcheon mine area, Ulsan, is investigated, and a natural attenuation capacity on redox and pH is evaluated. Arsenopyrite, the major source of arsenic pollution in the Dalcheon mine area, is contained up to $2\%$ in tailings. Furthermore, As-bearing minerals such as loellingite, nicolite, rammelsbergite, gersdorffite cobaltite and pyrite are also source of arsenic contamination, which show various concentration of arsenic each other. Surface of pyrite and arsenopyrite in tailings partly oxidized into Fe-arsenates and Fe-oxides, which means a progressive weathering process. There is no relationship between pH and arsenic content in groundwaters, otherwise Eh and arsenic concentration in unsaturated and saturated groundwater shows positive relationship. RMB (Red Mud Bauxite) could be useful as a trigger on natural attenuation due to superior ability of removal capacity of arsenic when contaminated soil and groundwater in the Dalcheon mine area are remediated.

Effects of Fly Ash and Gypsum Mixture on Reducing Phosphorus Loss from Paddy Soil (논 토양에서 석탄회와 석고의 혼합제를 활용한 인산유출 저감)

  • Lee, Yong-Bok;Lee, Seul-Bi;Oh, Ju-Hwan;Lee, Chang-Hoon;Hong, Chang-Oh;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Fly ash and phospho-gypsum which are industrial by-product were investigated as a means of reducing dissolved phosphorus in arable soil. To determine the optimum mixing ratio of fly ash(FA) and phospho-gypsum(PG) for reducing dissolved reactive P(DRP) in soil, various mixture ratio of FA and PG were mixed with two soil. The DRP content and pH in soils were analysed after 3 weeks incubation under flooding condition. Although DRP content in soils was significantly decreased by FA-PG mixture compared with control, there were no significant difference among the FA and PG mixture ratio of 75:25, 50:50, and 25:75. The mixture of 75% FA and 25% PG was selected for field test. A field experiment was carried out to evaluate the reducing DRP content in paddy soil to which 0(NPK), 20(FG 20), 40(FG 40), and 60(FG 60) Mg $ha^{-1}$ of the mixture were applied. The DRP content was reduced by 31% at the application rate of 60 Mg $ha^{-1}$. In contrast to deceasing DRP, Ca-P content increased significantly with the mixture application rate. After rice harvesting, available $SiO_2$, P, and exchangeable Ca content in soil increased significantly with application rate due to high content of Si, P, and Ca in the mixture. Mixtures of fly ash and gypsum should reduce P loss from paddy soil and increase soil fertility.

Optimizated pH and Mitigated Ammonia Emission in Pig Manure Slurry by Soluble Carbohydrate Supplementation (수용성 탄수화물을 이용한 분뇨슬러리 pH 적정화 및 암모니아 휘산의 저감)

  • Lim, Joung-Soo;Hwang, Ok-Hwa;Lee, Sang Ryong;Cho, Sung-Back;Kwag, Jung-Hoon;Lee, Dong-Hyun;Jung, Min Woong;Han, Deug-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.103-110
    • /
    • 2017
  • In Concentrated Animal Feeding Operations(CAFOs), emission of ammonia from stored manure contributes negatively on the wellness of livestock. In CAFOs facilities, indoor aerial ammonia concentration oftentime surpasses the critical level potentially harmful to livestock's immune system. Understandably, numerous researches to control aerial ammonia have been conducted in countries where CAFOs were practiced for many decades. Some innovative technologies, such as scrubber, bio-filter, and additives emerged, as a result. Among them, microbial additives became popular in Korea, due to an easiness of use and affordability. However, microbial additives still have some weaknesses. Their price is still high enough to discourage farmers who run a small scale farm and their effectiveness are still questioned by many users and researchers. In the present study, we found soluble carbohydrates, such as sugar, glucose, and molasses, when supplemented to pig slurry manure, can mitigate ammonia emission. To be more specific, pig manure slurry(120kg), stored in container(200L), was supplemented with sugar at 0.1%(w/w) and was, subsequently, monitored for pH and aerial ammonia for next 10 days. From this experiment, it was found that the sugar supplementation was effective in mitigating the aerial ammonia concentration (33% in average) when monitored daily. Also, the pH of manure slurry was maintained at relatively low level(8.2) in sugar-supplemented manure slurry while it was elevated to 8.5 in untreated slurry. Conclusively, the obtained data suggest that soluble carbohydrate can mitigate ammonia emission by acidifying manure slurry. Additionally, it can be suggested that soluble carbohydrates, such as sugar, glucose, and molasses, can be reasonable choices for animal farmers who have been looking for an alternative choice to replace expensive microbial additives.