양친성의 성질을 가진 폴리디아세틸렌 단량체를 이용한 센서는 주로 수용액 상태에서 리포좀이나 또는 다른 구조를 이용하였다. 폴리디아세틸렌은 수용액 상에서 쉽게 구조를 형성하는 장점과 여러 광학적인 특성을 가지고 있어서 다양한 목적물질의 검출을 가능하게 하였다. 디아세틸렌 단량체는 수 nm의 크기의 분자로서 LB 필름 제조 방법을 이용하면 아주 얇은 단분자층 또는 다분자층으로 필름을 형성할 수 있게 된다. 이렇게 형성된 필름은 수용액상에서 만들어진 구조체와 같은 성질을 가진다. 즉 무색으로 형성된 구조체들은 254 nm에 조사를 시키면 파란색으로 변하게 되며 650 nm 부근에서 최대 흡수 파장을 가지게 된다. 파란색으로 형성된 구조체는 다양한 외부환경 (온도, pH, 용매 등)이나 목적물질 (바이러스, 단백질, 항체, DNA, 펩타이드 등)의 결합으로 약하게는 보라색에서 강하게는 붉은색으로 변하게 된다. 색전이가 이루어진 수용액이나 필름에서는 파란색에서는 존재하지 않던 형광이 630 nm 부근에서 최대 방출 파장이 나타나기도 한다. 따라서 가시적인 방법이나 형광 검출 방법을 이용하면 색이 변한 정도에 따라 특이성의 정도를 결정할 수 있는 좋은 센서 기술이 될 것으로 사료된다. 목적 물질 검출에 대한 연구 이외에 대부분의 폴리디아세틸렌은 색전이가 이루어진 후 가역적인 현상을 보이지 않는다. 그러나 적절하게 치환된 관능기는 가역적인 성질을 부여하게 된다. 이런 성질들을 내포하면서 막대 모양과 같은 견고한 실리카 구조체의 형성에 적용할 수 있다는 연구 결과가 보고되고 있다. 그러나 구조체를 형성하는 단량체는 비특이적인 결합을 할 수 있는 관능기 (-COOH, $-NH_2$ 등)을 포함하고 있기 때문에 선택적인 센서의 개발을 위해서는 개선해야 할 부분이다. 결론적으로 보완된 다양한 구조체와 센서 적용 기술은 현재의 표지방식을 기반으로 하는 감지 기술을 대체할 수 있는 새로운 비표지 센서로의 적용이 가능할 것으로 여겨진다.
폴리에스 섬유의 감량을 위한 가성소다 처리 시스템에서 감량정도를 알기 위해서는 가성소다의 농도 측정 장치가 필요하다. 감량공정에서는 여러번의 농도측정이 요구되므로 단위농도 측정 공정은 빠르고 정확하게 이루어져야 하며, 이에 따른 당량점 검출 알고리듬이 제시되어야 한다. 본 논문에서는 매 적정액 주입 후 측정되는 각 pH값들로써 적정곡선을 추정하였고, 정확한 당량점을 예측하기 위해서 카디날 스프라인 알고리듬을 사용하였다. 처리시간이 경과되는 동안의 여러 당량점들을 이용하여 섬유의 감량 직선을 자동적으로 추정하고 그래프로 나타낼 수 있게 하였으며 섬유감량 시스템의 감량종료 신호를 발생시킬 수 있는 자동적정 장치의 하드웨어와 소프트웨어를 설계하였다.
Structure and electrical properties of $0.85NaNbO_3-0.15LiNbO_3$ ($(Li_{0.15}Na_{0.85})NbO_3$) ceramics were investigated as a function of sintering temperature. $(Li_{0.15}Na_{0.85})NbO_3$ ceramics were prepared by conventional solid state processing. A main phase of the orthorhombic perovskite structure and secondary phase of $LiNbO_3$ were confirmed for all sintered specimens. Dense $(Li_{0.15}Na_{0.85})NbO_3$ ceramics were obtained at sintering temperature above $1050^{\circ}C$. With increasing sintering temperature, the electromechanical coupling factor ($k_p$), piezoelectric constant ($d_{33}$) and relative dielectric constant (${\varepsilon}_r$) of the sintered specimens increased, while the mechanical quality factor ($Q_m$) decreased. These results are due to the increase of grain size and crystallite size of orthorhombic perovskite structure. Based on the temperature dependence of ${\varepsilon}_r$, stable piezoelectric properties were expected because no phase transition found up to $300^{\circ}C$. Typically, kp of 18%, $d_{33}$ of 34.7 pC/N, ${\varepsilon}_r$ of 135, and $Q_m$ of 62.8 were obtained for the specimens sintered at $1200^{\circ}C$ for 5 h.
SnO$_2$를 모물질로 하는 가스센서는 n형 산화물 반도체로서 공기중의 산소의 흡탈착 및 전자의 수수에 의해 전기전도도의 변화로 특정 가스를 감지한다. 지금까지 반도체식 가스센서의 모물질로 가장 많이 연구되어 왔지만 아직도 선택성, 안정성 등 여러 가지 문제를 안고 있다. 그리고 개선방안으로 귀금속 촉매의 첨가 및 입자의 크기의 조절 등이 흔히 연구되어 왔다. 따라서 본 연구에서는 순수한 SnO$_2$ 를 이용하여 소결 온도 및 입자 크기에 의한 영향을 CO가스 및 수분에 대한 감도, 반응 시간을 통해 알아보았다. 수열 합성 및 침전 법으로 나노 크기의 SnO$_2$ 분말을 합성하여 스크린 인쇄법으로 후막 가스센서를 제조하였다 침전법에서 SnCl$_4$에 암모니아수로 pH=10.5로 적정하여 SnO$_2$ 분말을 얻었다. 그리고 입자 크기를 조절하기 위해 수열 합성 시 autoclave 내의 수열처리 온도를 100, 150, 20$0^{\circ}C$로 조절하여 SnO$_2$ 분말을 제조하고 입자 크기와 성분분석을 위해 XRD, SEM, TEM, BET 측정을 하였다. 그 결과 침전법으로 제조한 입자의 크기는 20nm 정도였으며 수열 처리한 SnO$_2$ 입자는 10nm이하의 미세한 입자를 얻을 수 있었다. 수열 합성 시 온도가 높아질수록 더 작은 입자 크기를 얻을 수 있었고 600, 7()0, 80$0^{\circ}C$ 열처리 후 입자성장이 침전법에 의한 SnO$_2$ 분말보다 더 작게 일어났다. 이렇게 제조한 나노크기의 SnO$_2$ 분말을 이용하여 습도 및 CO 가스에 대한 그 특실을 평가하였다. CO 20ppm에 대하여 40%정도의 감도를 보였으며 입자가 작아질수록 높은 감도를 보이는 것을 확인 할 수 있었다. 반면 CO 가스와 반응 후 회복 시 입자 의기가 작아질수록 회복이 늦어짐을 알 수 있었다. 그리고 15$0^{\circ}C$에서 습도에 대한 반응 후 회복시간을 조사해보니 같은 결과를 얻을 수 있었다. 이것은 입자 필기가 작아질수록 많은 흡착 사이트를 제공함으로써 높은 감도를 가지지만 반면 다량의 흡착된 가스들이 탈착 하는데 더 많은 시간이 소요되었기 때문이다.
본 논문은 생체 신호를 얻기 위한 생체삽입형 8-채널 바이오텔레메트리 시스템을 설계하였다. 본 시스템의 내부회로는 가능한 한 소형이고 저소비 전력화하였을 뿐만아니라 synchronization gap을 주기로 생채신호의 연속측정을 가능하도록 설계하였다. 본 시스템의 주된 기능은 생체신호 연속측정과 외부회로의 적절한 명령에 의해 생체 삽입 전지를 On, off하여 소비전력을 줄일 수 있도록 하였다. 또한 체내 삽입시스템을 집적화하기 위해 람다룰을 기본으로 한 $2{\mu}m$ n-well 설계규칙에 의해 레이아웃을 수행하였다. 그러므로 국내에서 개발되고 있는 압력센서나 ISFET 등을 본 시스템과 함께 삽입하여 생체신호, 즉 심전도, 혈류량, 혈압 등을 측정해 외부로 전송하는 의용 텔레메트리 시스템이 기대된다.
새로이 개발되어 식품과학 분야에 도입되기 시작한 conducting polymer로 구성된 32개의 센서를 장착한 전자코를 이용하여 감식초의 농축시 향기성분의 변화를 측정하고 그 데이터를 관능검사와 비교 분석하여, 감식초의 향기성분 분석에 전자코의 활용가능성 여부를 알아보았다. 관능검사와 유기산 분석결과는 감식초 농축액들간의 농축정도에 따른 향기성분 및 유기산 함량의 변화와 차이를 분명히 나타내고 있었으나, conducting polymer로 이루어진 32개의 센서 array가 장착된 전자코는 감식초의 농축 정도에 따른 향기 성분의 패턴 변화를 감지하지 못하고 모두 같은 패턴으로 나타내주고 있어서 conducting polymer 센서가 장착된 전자코는 감식초의 향기성분 분석에는 적합하지 않은 것으로 판단된다.
We have detected deoxynivalenol(DON) using a metal-oxide-semiconductor field-effect-transistor(MOSFET)-based biosensor. The MOSFET-based biosensor is fabricated by a standard complementary metal-oxide-semiconductor(CMOS) process, and the biosensor's electrical characteristics were investigated. The output of the sensor was stabilized by employing a reference electrode that applies a fixed bias to the gate. Au which has a chemical affinity for thiol was used as the gate metal to immobilize a self-assembled monolayer(SAM) made of 16-mercaptohexadecanoic acid(MHDA). The SAM was used to immobilize anti-deoxynivalenol antibody. The carboxyl group of the SAM was bound to the anti- deoxynivalenol antibody. Anti-deoxynivalenol antibody and deoxynivalenol were bound by an antigen-antibody reaction. In this study, it is confirmed that the MOSFET-based biosensor can detect deoxynivalenol at concentrations as low as 0.1 ${\mu}g$/ml. The measurements were performed in phosphate buffered saline(PBS; pH 7.4) solution. To verify the interaction among the SAM, antibody, and antigen, surface plasmon resonance(SPR) measurements were performed.
A metal oxide semiconductor gas sensor is operated by measuring the changes in resistance that occur on the surface of nanostructures for gas detection. ZnO, which is an n-type metal oxide semiconductor, is widely used as a gas sensor material owing to its high sensitivity. Various ZnO nanostructures in gas sensors have been studied with the aim of improving surface reactions. In the present study, the sol-gel and vapor phase growth techniques were used to fabricate nanostructures to improve the sensitivity, response, and recovery rate for gas sensing. The sol-gel method was used to synthesize SnO2 nanoparticles, which were used as the seed layer. The nanoparticles size was controlled by regulating the process parameters of the solution, such as the pH of the solution, the type and amount of solvent. As a result, the SnO2 seed layer suppressed the aggregation of the nanostructures, thereby interrupting gas diffusion. The ZnO nanostructures with a sol-gel processed SnO2 seed layer had larger specific surface area and high sensitivity. The gas response and recovery rate were 1-7 min faster than the gas sensor without the sol-gel process. The gas response increased 4-24 times compared to that of the gas sensor without the sol-gel method.
본 연구에서는 일회용 센서 칩으로 제작 가능한 스크린 프린팅된 탄소칩 전극(screen printed carbon electrode; SPCE) 표면에 전도성고분자 및 효소 티로시나아제(tyrosinase, Tyr)를 적층하여 전기화학적인 방법으로 남성 질환, 갑상선 질환 등과 연관성이 입증된 내분비계 교란 물질인 비스페놀F (bisphenol F, BPF) 검출에 적용하였다. 산소 플라즈마 처리를 통해 음전하를 띠게 한 SPCE 작업전극 표면에 양전하를 띄는 전도성 고분자인 poly(diallyldimethyl ammonium chloride) (PDDA)과 음전하를 띠는 고분자 화합물 poly(sodium 4-styrenesulfonate) (PSS) 그리고 PDDA 순서대로 정전기적인 인력으로 층을 쌓고, 최종적으로 pH (7.0)를 조절하여 음전하를 띄게 한 효소, Tyr층을 올려 PDDA-PSS-PDDA-Tyr 센서를 제작하였다. 상기 전극 센서를 기질이자 타겟분석물인 BPF 용액에 접촉하면, 전극 표면에서 Tyr 효소와 산화반응에 의해 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione)가 생성되고, 순환전압전류법과 시차펄스전압전류법을 이용하여 생성물을 0.1 V (vs. Ag/AgCl)에서 환원하면 4,4'-methylenebis(benzene-1,2-diol)이 생성되면서 발생하는 피크 전류 값의 변화를 측정함으로써, BPF의 농도를 정량적으로 분석하였다. 또한, 기존에 많은 연구에서 사용되는 인산완충생리식염수를 대체할 수 있는 이온성 액체 전해질을 사용하여 BPF의 검출 성능 결과를 비교하였다. 또한 BPF와 유사한 구조를 갖는 방해물질로 작용하는 비스페놀S에 대한 선택성을 확인하였다. 마지막으로 실험실에서 준비한 실제 시료안의 BPF의 농도를 분석하는데 제작한 센서를 적용함으로써 센서의 실제 적용 가능성을 입증하고자 하였다.
A infrared rays sensor or ultrasonic sensor can detect the object at the narrow area, however a pressure sensor can detect man and animal at the wide area. It is necessary to manufacture the sensor by using Pb-free ceramics in the respect of environmental protection. Piezoelectric properties of ceramics added 0.2wt% $La_2O_3\;into\;0.96Bi_{0.5}(Na_{0.84}K_{0.16})_{0.5}+0.04SrTiO_3$ were 0.4 of kp, $31{\times}$10^{-3}Vm/N\;of\;g_{33}$. The output voltage of the pressure sensor is 0.48 V at 20 in$H_2O$. The output voltage of the pressure sensor with driving circuit is 9.8 V, 37 ms width.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.