Browse > Article
http://dx.doi.org/10.5369/JSST.2014.23.2.105

Structure and Electrical Properties of 0.85NaNbO3-0.15LiNbO3 Ceramics  

Jeon, Chang Jun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology)
Jeong, Young Hun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology)
Yun, Ji Sun (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology)
Nam, Joong Hee (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology)
Paik, Jong Hoo (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology)
Cho, Jeong Ho (Intelligent Electronic Component Team, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of Sensor Science and Technology / v.23, no.2, 2014 , pp. 105-109 More about this Journal
Abstract
Structure and electrical properties of $0.85NaNbO_3-0.15LiNbO_3$ ($(Li_{0.15}Na_{0.85})NbO_3$) ceramics were investigated as a function of sintering temperature. $(Li_{0.15}Na_{0.85})NbO_3$ ceramics were prepared by conventional solid state processing. A main phase of the orthorhombic perovskite structure and secondary phase of $LiNbO_3$ were confirmed for all sintered specimens. Dense $(Li_{0.15}Na_{0.85})NbO_3$ ceramics were obtained at sintering temperature above $1050^{\circ}C$. With increasing sintering temperature, the electromechanical coupling factor ($k_p$), piezoelectric constant ($d_{33}$) and relative dielectric constant (${\varepsilon}_r$) of the sintered specimens increased, while the mechanical quality factor ($Q_m$) decreased. These results are due to the increase of grain size and crystallite size of orthorhombic perovskite structure. Based on the temperature dependence of ${\varepsilon}_r$, stable piezoelectric properties were expected because no phase transition found up to $300^{\circ}C$. Typically, kp of 18%, $d_{33}$ of 34.7 pC/N, ${\varepsilon}_r$ of 135, and $Q_m$ of 62.8 were obtained for the specimens sintered at $1200^{\circ}C$ for 5 h.
Keywords
$(Li,Na)NbO_3$; Piezoelectric ceramics; Structure; Electrical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. G. Moon, H. C. Song, S. J. Kim, J. W. Choi, C. Y. Kang, and S. J. Yoon, "Piezoelectric properties and microstructure of $0.01Pb(Mg_{1/2}W_{1/2})O_{3}-0.41Pb(Ni_{1/3}Nb_{2/3})O_{3}-0.35PbTiO_{3}-0.23PbZrO_{3}$ thick film with particle size distribution", J. Sensor Sci. & Tech., vol. 17, no. 6, pp. 418-424, 2008.   DOI
2 M. Ahtee, A. M. Glazer, and H. D. Megaw, "The structures of sodium niobate between $480^{\circ}$ and $575{^{\circ}C}$, and their relevance to soft-phonon modes", Phil. Mag., vol. 26, no. 4, pp. 995-1014, 1972.   DOI
3 K. Konieczny, "Pyroelectric and dielectric study of $NaNbO_{3}$ single crystals", Mater. Sci. Eng. B, vol. 60, no. 2, pp. 124-127, 1999.   DOI   ScienceOn
4 H. Shi, X. Li, D. Wang, Y. Yuan, Z. Zou, and J. Ye, "$NaNbO_{3}$ nanostructures: facile synthesis, characterization, and their photocatalytic properties", Catal. Lett., vol. 132, no. 1-2, pp. 205-212, 2009.   DOI
5 H. D. Megaw and M. Wells, "The space group of $NaNbO_{3}$ and $(Na_{0.995}K_{0.005})NbO_{3}$", Acta Crystallogr., vol. 11, no. 12, pp. 858-862, 1958.   DOI
6 J. W. Liu, G. Chen, Z. H. Li, and Z. G. Zhang, "Hydrothermal synthesis and photocatalytic properties of $ATaO_{3}$ and $ANbO_{3}$ (A = Na and K)", Int. J. Hydrogen Energy, vol. 32, no. 13, pp. 2269-2272, 2007.   DOI   ScienceOn
7 S. Lanfredi, L. Dessemond, and A. C. Martins Rodrigues, "Dense ceramics of $NaNbO_{3}$ produced from powders prepared by a new chemical route", J. Eur. Ceram. Soc., vol. 20, no. 7, pp. 983-990, 2000.   DOI   ScienceOn
8 L. Pardo, P. Duran-Martin, J. P. Mercurio, L. Nibou, and B. Jimenez, "Temperature behaviour of structural, dielectric and piezoelectric properties of sol-gel processed ceramics of the system $LiNbO_{3}$-$NaNbO_{3}$", J. Phys. Chem. Solids, vol. 58, no. 9, pp. 1335-1339, 1997.   DOI
9 A. C. Sakowski-Cowley, K. Lukaszewicz, and H. D. Megaw, "The structure of sodium niobate at room temperature, and the problem of reliability in pseudosymmetric structures", Acta Crystallogr. B, vol. 25, no. 5, pp. 851-865, 1969.   DOI
10 R. Jimenez, M. L. Sanjuan, and B. Jimenez, "Stabilization of the ferroelectric phase and relaxor-like behaviour in low Li content sodium niobates", Phys. Rev. B, vol. 16, no. 41, pp. 7493-7510, 2004.
11 A. M. Glazer, "Simple ways of determining perovskite structures", Acta Crystallogr. A, vol. 31, no. 6, pp. 756-762, 1975.   DOI
12 R. C. R. Franco, E. R. Camargo, M. A. L Nobre, E. R. Leite, E. Longo, and J. A. Varela, "Dielectric properties of $Na_{1-x}Li_{x}NbO_{3}$ ceramics from powders obtained by chemical synthesis", Ceram. Int., vol. 25, no. 5, pp. 455-460, 1999.   DOI   ScienceOn
13 R. Chen, Y. Wang, Y. Hu, Z. Hu, and C. Liu, "Modification on luminescent properties of $SrAl_{2}O_{4}:Eu^{2+}$, $Dy^{3+}$ phosphor by $Yb^{3+}$ ions doping", J. Lumin., vol. 128, no. 7, pp. 1180-1184, 2008.   DOI   ScienceOn
14 Yu. I. Yuzyuk, E. Gagarina, P. Simon, L. A. Reznitchenko, L. Hennet, and D. Thiaudiere, "Synchrotron x-ray diffraction and Raman scattering investigations of $(Li_{x}Na_{1-x})NbO_{3}$ solid solutions: Evidence of the rhombohedral phase", Phys. Rev. B, vol. 69, no. 14, pp. 144105, 2004.   DOI   ScienceOn
15 C. Chaker, W. E. Gharbi, N. Abdelmoula, A. Simon, H. Khemakhem, and M. Maglione, "$Na_{1-x}Li_{x}NbO_{3}$ ceramics studied by X-ray diffraction, dielectric, pyroelectric, piezoelectric and Raman spectroscopy", J. Phys. Chem. Solids, vol. 72, no. 10, pp. 1140-1146, 2011.   DOI   ScienceOn