• 제목/요약/키워드: pERK 1/2

검색결과 612건 처리시간 0.029초

용담화 에탄올 추출물의 항노화 작용 연구 (Study on the Anti-aging Activity of Gentianae sino-ornata Ethanol Extract)

  • 최형욱;리순화;김은주;김수경;이장천;임규상
    • 한방안이비인후피부과학회지
    • /
    • 제28권2호
    • /
    • pp.1-12
    • /
    • 2015
  • Objective : The goal of this study is to identify the effects of extract ofGentianae sino-ornata(GSO) on the anti-oxidative activity of skin.For this purpose, several functions of GSO were analyzed in terms of skin-lightening activity and wrinkle improvement. Methods : Cell viability was measured by neutral red (NR) assay, and GSO showed highly efficacy in DPPH radical scavenging activity. The level of tyrosinase and matrix metalloproteinase-1 (MMP-1) in media was analyzed by ELISA kit, and the expressions of p-JNK and p-ERK was measured by Western blot. To elucidate inhibitory effects of GSO on melanin synthesis, I determined the tyrosinase activity and melanin production in B16F10 cells. Results : MMP-1 production in UVB-stimulated HDF cells was inhibited by GSO treatments, and also GSO inhibited protein expression levels of p-JNK and p-ERK. GSO significantly reduced tyrosinase activity and melanin synthesis in B16F10 cells. Conclusions : From these results, GSO appears to be effective on skin elasticity increase, wrinkle improvement, whitening as anti-aging activity.

Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Activates Pro-Survival Signaling Pathways, Nuclear Factor-${\kappa}B$ and Extracellular Signal-Regulated Kinase 1/2 in Trophoblast Cell Line, JEG-3

  • Ka Hakhyun
    • Reproductive and Developmental Biology
    • /
    • 제29권2호
    • /
    • pp.101-108
    • /
    • 2005
  • Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a well-known inducer of apoptotic cell death in many tumor cells. 1RAIL is expressed in human placenta, and cytotrophoblast cells express 1RAIL receptors. However, the role of TRAIL in human placentas and cytotrophoblast cells is not. well understood. In this study a trophoblast cell line, JEG-3, was used as a model system to examine the effect of TRAIL. on key intracellular signaling pathways involved in the control of trophoblastic cell apoptosis and survival JEG-3 cells expressed receptors for 1RAIL, death receptor (DR) 4, DR5, decoy receptor (OcR) 1 and DeR2. Recombinant human TRAIL (rhTRAIL) did not have a cytotoxic effect determined by MIT assay and did not induce apoptotic cell death determined by poly-(ADP-ribose) polymerase cleavage assay. rhTRAIL induced a rapid and transient nuclear translocation of nuclear $factor-{\kappa}B(NF-{\kappa}B)$ determined by immunoblotting using nuclear protein extracts. rhTRAIL rapidly activated extracellular signal-regulated protein kinase (ERK) 1/2 as determined by immnoblotting for phospho-ERK1/2. However, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK) and Akt (protein kinase B) were not activated by rhTRAIL. The ability of 1RAIL to induce $NF-{\kappa}B$ and ERK1/2 suggests that interaction between TRAIL and its receptors may play an important role in trophoblast cell function during pregnancy.

Cryptotanshinone inhibits TNF-α-induced LOX-1 expression by suppressing reactive oxygen species (ROS) formation in endothelial cells

  • Ran, Xiaoli;Zhao, Wenwen;Li, Wenping;Shi, Jingshan;Chen, Xiuping
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권4호
    • /
    • pp.347-355
    • /
    • 2016
  • Cryptotanshinone (CPT) is a natural compound isolated from traditional Chinese medicine Salvia miltiorrhiza Bunge. In the present study, the regulatory effect and potential mechanisms of CPT on tumor necrosis factor alpha ($TNF-{\alpha}$) induced lectin-like receptor for oxidized low density lipoprotein (LOX-1) were investigated. Human umbilical vein endothelial cells (HUVECs) were cultured and the effect of $TNF-{\alpha}$ on LOX-1 expression at mRNA and protein levels was determined by Real-time PCR and Western blotting respectively. The formation of intracellular ROS was determined with fluorescence probe $CM-DCFH_2-DA$. The endothelial ox-LDL uptake was evaluated with DiI-ox-LDL. The effect of CPT on LOX-1 expression was also evaluated with SD rats. $TNF-{\alpha}$ induced LOX-1 expression in a dose- and time- dependent manner in endothelial cells. $TNF-{\alpha}$ induced ROS formation, phosphorylation of $NF-{\kappa}B$ p65 and ERK, and LOX-1 expression, which were suppressed by rotenone, DPI, NAC, and CPT. $NF-{\kappa}B$ inhibitor BAY11-7082 and ERK inhibitor PD98059 inhibited $TNF-{\alpha}-induced$ LOX-1 expression. CPT and NAC suppressed $TNF-{\alpha}-induced$ LOX-1 expression and phosphorylation of $NF-{\kappa}B$ p65 and ERK in rat aorta. These data suggested that $TNF-{\alpha}$ induced LOX-1 expression via ROS activated $NF-{\kappa}B/ERK$ pathway, which could be inhibited by CPT. This study provides new insights for the anti-atherosclerotic effect of CPT.

Enhancement of Anxiety and Modulation of TH and pERK Expressions in Amygdala by Repeated Injections of Corticosterone

  • Lim, Hee-Na;Jang, So-Yong;Lee, Yeon-Ju;Moon, So-Hyeon;Kim, Ji-Eun;Oh, Sei-Kwan
    • Biomolecules & Therapeutics
    • /
    • 제20권4호
    • /
    • pp.418-424
    • /
    • 2012
  • Repeated stress induces corticosterone release. However, it is not clear that stress results in further elevation of corticosterone levels, and the roles of released corticosterone to aggravate stress-related symptoms are also not clear. This study investigated whether neuronal modulation was induced in the amygdala after two kinds of stress, that is, such as electric shock and corticosterone injection. It was found that stress by electric shock decreased the expression of tyrosine hydoroxylase (TH) in the amygdala while the expression of pERK was increased. However, there is no difference in the expressions of TH and pERK in the frontal cortex compared with those of the control group. The level of corticosterone was significantly increased in the serum after stress. To determine the effect of corticosterone on the induction of anxiety and the expression of TH, the rats received corticosterone (20 mg or 40 mg/kg i.p.) for 1 day, 1 week, 2 weeks and 3 weeks, respectively. The spent time in open arms of the EPM (elevated plus maze) test was significantly decreased after 1 week, 2 weeks and 3 weeks. The time spent in open arms of the EPM test after repeated injections of corticosterone was significantly decreased in a dose-dependent manner. The expression of TH in the amygdala was reduced after following repeated corticosterone treatment for 2 weeks and 3 weeks. Collectively, this study suggests that corticosterone has a major role in the induction of anxiety and the modulation of TH expression, at least, in the amygdala.

적양 추출물의 멜라닌 합성 저해효과 (The Inhibitory Effects of Alnus Japonica Steud. Extract on Melanogenesis)

  • 이준영;임경란;정택규;윤경섭
    • 대한화장품학회지
    • /
    • 제39권2호
    • /
    • pp.159-166
    • /
    • 2013
  • 본 연구에서는 새로운 미백소재를 개발하기 위해 적양 에탄올추출물을 효소처리 후 EtOAc 분획물(AJE)을 준비하여 in vitro 상에서 이들의 tyrosinase 저해활성과 세포 수준에서의 멜라닌 합성 저해효과를 측정하였다. AJE는 mushroom tyrosinase의 활성에는 영향을 미치지 않았으나 B16-F1 melanoma cell을 이용한 멜라닌 합성 저해효과에 있어서 농도 의존적으로 멜라닌 합성을 저해하여, $40{\mu}g/mL$의 농도에서 52% 이상의 저해효과를 나타내었다. 이러한 멜라닌 합성 저해효과에 대한 작용 기전을 확인하기 위해 western blot을 통해 멜라닌 합성 경로에 관련된 단백질의 발현을 측정하였다. 그 결과 멜라닌 합성에 관여하는 효소인 tyrosinase related protein 1 (TRP-1)의 발현을 억제하였고, 이를 조절하는 전사인자인 microphthalmia associated transcription factor (MITF) 발현 역시 효과적으로 억제하였다. 또한 extracellular signal-regulated kinase (ERK) pathway를 활성화시킴으로써 phosphorylated extracellular signal-regulated kinase (p-ERK)의 발현을 상당히 증가시키는 것을 확인할 수 있었다. 이러한 결과는 AJE가 멜라닌 합성의 신호전달 경로 중 ERK pathway의 활성화를 통해 MITF의 분해를 촉진시키고 이로 인해 MITF의 발현을 감소시키며, 그 결과 멜라닌 합성에 관여하는 효소 중 TRP-1의 발현을 감소시킴으로써 멜라닌 합성을 저해하는 것으로 사료되며, 따라서 AJE는 미백용도의 기능성 원료로서의 가능성이 큰 것으로 판단된다.

The Effect of Luteolin on the Modulation of Vascular Contractility via ROCK and CPI-17 Inactivation

  • Hyuk-Jun, Yoon;Dae Hong, Kang;Fanxue, Jin;Joon Seok, Bang;Uy Dong, Sohn;Hyun Dong, Je
    • Biomolecules & Therapeutics
    • /
    • 제31권2호
    • /
    • pp.193-199
    • /
    • 2023
  • In this investigation, we made a study of the efficacy of luteolin (a flavonoid found in plants such as vegetables, herbs and fruits) on vascular contractibility and to elucidate the mechanism underlying the relaxation. Isometric contractions of denuded muscles were stored and combined with western blot analysis which was conducted to assess the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to examine the effect of luteolin on the RhoA/ROCK/CPI-17 pathway. Luteolin significantly alleviated phorbol ester-, fluoride- and thromboxane mimetic-elicited contractions regardless of endothelial nitric oxide synthesis, implying its direct effect on smooth muscle. It also significantly alleviated the fluoride-elicited elevation in pCPI-17 and pMYPT1 levels and phorbol 12,13-dibutyrate-elicited increase in pERK1/2 level, suggesting depression of ROCK and PKC/MEK activity and ensuing phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that luteolin-elicited relaxation includes myosin phosphatase reactivation and calcium desensitization, which seems to be arbitrated by CPI-17 dephosphorylation via ROCK/PKC inhibition.

The Effect of Galangin on the Regulation of Vascular Contractility via the Holoenzyme Reactivation Suppressing ROCK/CPI-17 rather than PKC/CPI-17

  • Yoon, Hyuk-Jun;Jung, Won Pill;Min, Young Sil;Jin, Fanxue;Bang, Joon Seok;Sohn, Uy Dong;Je, Hyun Dong
    • Biomolecules & Therapeutics
    • /
    • 제30권2호
    • /
    • pp.145-150
    • /
    • 2022
  • In this study, we investigated the influence of galangin on vascular contractibility and to determine the mechanism underlying the relaxation. Isometric contractions of denuded aortic muscles were recorded and combined with western blot analysis which was performed to measure the phosphorylation of phosphorylation-dependent inhibitory protein of myosin phosphatase (CPI-17) and myosin phosphatase targeting subunit 1 (MYPT1) and to evaluate the effect of galangin on the RhoA/ROCK/CPI-17 pathway. Galangin significantly inhibited phorbol ester-, fluoride- and thromboxane mimetic-induced vasoconstrictions regardless of endothelial nitric oxide synthesis, suggesting its direct effect on vascular smooth muscle. Galangin significantly inhibited the fluoride-dependent increase in pMYPT1 and pCPI-17 levels and phorbol 12,13-dibutyrate-dependent increase in pERK1/2 level, suggesting repression of ROCK and MEK activity and subsequent phosphorylation of MYPT1, CPI-17 and ERK1/2. Taken together, these results suggest that galangin-induced relaxation involves myosin phosphatase reactivation and calcium desensitization, which appears to be mediated by CPI-17 dephosphorylation via not PKC but ROCK inactivation.

숙지황(熟地黃) 추출물이 $H_2O_2$에 의해 유도된 ECV304 세포의 apoptosis에 미치는 영향 (Protective Effect of Rehmanniae Radix Preparata Extract on $H_2O_2$-induced Apoptosis of ECV304 Cells)

  • 김인규;주성민;박진모;전병제;양현모;김원신;전병훈
    • 동의생리병리학회지
    • /
    • 제23권1호
    • /
    • pp.76-83
    • /
    • 2009
  • Rehmannia Radix Preparata (RRP) used to nourish Eum and enrich blood for consumptive fever, aching, and limpness of the loins and knees, and to replenish essence for tinnitus, premature greying of beard and hair. In the present study, we studied about the protective effect of RRP on hydrogen peroxide-induced oxidative stress in human vascular endothelial cells. ECV304 cells were preincubated with RRP (100, 200, 300 and $400{\mu}g/m{\ell}$) for 12hr and then treated with $600{\mu}M$ $H_2O_2$ for 12hr. The protective effects of RRP on $H_2O_2$-induced apoptosis in ECV304 cells was determined by using MTT assay, FDA-PI staining, flow cytometric analysis, caspase-3 activity assay, ROS assay and western blot. The results of this experiment showed that RRP inhibited $H_2O_2$-induced apoptosis and ROS production in ECV304 cells. Moreover, RRP increased ERK activation that decreased in $H_2O_2$-treated ECV304 cells, and inhibited p38 and JNK activation. Furthermore, RRP increased expression of heme oxygenase-1 (HO-1) in $H_2O_2$-treated ECV304 cells. Also, HO-1 protein expression induced by RRP was reduced by the addition of ERK inhibitor (PD98059) in $H_2O_2$-treated ECV304 cells. These results suggest that protective effect of RRP on $H_2O_2$-induced oxidative stress in ECV304 cells may be associated with increase of ERK activation and HO-1 protein, and reduction of p38 and JNK activation.

Lisophosphatidic Acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kim, Sung-Eun;Kwon, Sun-Bang;Park, Eun-Sang;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • 제26권12호
    • /
    • pp.1055-1060
    • /
    • 2003
  • Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we found that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. However, the specific inhibition of the ERK or JNK pathways by PD98059 or D-JNKI1, respectively, did not restore the antiproliferative effect. We next examined changes in the expression of cell cycle related proteins. LPA decreased cyclin $D_1 and cyclin D_2$ levels but increased $p21^{WAF1/CIP1}$ (p21) and $p27^{KIP1}$ (p27) levels, which are known inhibitors of cyclin-dependent kinase. Flow cytometric analysis showed the inhibition of DNA synthesis by a reduction in the S phase and an increase in the $G_0/G_1$ phase of the cell cycle. Our results suggest that LPA induces cell cycle arrest by regulating the expressions of cell cycle related proteins.

Solanum nigrum L. Extract Inhibits Inflammation in Lipopolysaccharide-stimulated Raw 264.7 and BV2 Cells

  • Lee, Jin Wook;Jung, Hyuk-Sang;Sohn, Youngjoo;Kang, Yoon Joong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.92-92
    • /
    • 2018
  • Solanum nigrum L. (SNL), generally known as black nightshade, is traditionally used as medicine to reduce inflammation caused by several diseases like asthma, chronic bronchitis and liver cirrhosis. In this study, anti-inflammatory effects of SNL extract were examined and possible molecular mechanisms of the anti-inflammatory effects were investigated. The inhibitory effects of SNL extract on nitric oxide (NO), pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6) and Matrix metallopeptidase 9 (MMP-9) productions were dissected using lipopolysaccharide (LPS) stimulated murine macrophage-like cell line Raw264.7 cells and human microglial cell line BV2 cells. We further investigated whether SNL extract could suppress the phosphorylation of ERK1/2, JNK, and p38 and the nuclear expression of nuclear factor $NF-{\kappa}B$ p65 in LPS-stimulated Raw264.7 cells and BV2 cells. As a result, we showed that the SNL extract significantly decreased the production of pro-inflammatory cytokines, NO, and MMP-9. In addition, the SNL strongly inhibited the phosphorylation of ERK1/2, JNK, p38 and nuclear translocation of $NF-{\kappa}B$ p65 in activated cells. We confirmed that the extracts of SNL effectively inhibits the anti-inflammatory and may be used as a therapeutic to various inflammatory diseases.

  • PDF