• Title/Summary/Keyword: p38kinase

Search Result 636, Processing Time 0.028 seconds

Aster saponin A2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway

  • Su, Xiang-Dong;Yang, Seo Y;Shrestha, Saroj K;Soh, Yunjo
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.47.1-47.11
    • /
    • 2022
  • Background: In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives: This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods: The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results: In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion: AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget's disease, and osteogenesis imperfecta.

Anti-microbial and anti-inflammatory effects of Cheonwangbosim-dan against Helicobacter pylori-induced gastritis

  • Park, Hee-Seon;Jeong, Hye-Yun;Kim, Young-Suk;Seo, Chang-Seob;Ha, Hyekyung;Kwon, Hyo-Jung
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.39.1-39.15
    • /
    • 2020
  • Background: There are various Helicobacter species colonizing the stomachs of animals. Although Helicobacter species usually cause asymptomatic infection in the hosts, clinical signs can occur due to gastritis associated with Helicobacter in animals. Among them, Helicobacter pylori is strongly associated with chronic gastritis, gastric ulcers, and gastric cancers. As the standard therapies used to treat H. pylori have proven insufficient, alternative options are needed to prevent and eradicate the diseases associated with this bacterium. Cheonwangbosim-dan (CBD), a traditional herbal formula that is popular in East Asia, has been commonly used for arterial or auricular flutter, neurosis, insomnia, and cardiac malfunction-induced disease. Objectives: The present study investigated the antimicrobial effect of CBD on H. pylori-infected human gastric carcinoma AGS cells and model mice. Methods: AGS cells were infected with H. pylori and treated with a variety of concentrations of CBD or antibiotics. Mice were given 3 oral inoculations with H. pylori and then dosed with CBD (100 or 500 mg/kg) for 4 weeks or with standard antibiotics for 1 week. One week after the last treatment, gastric samples were collected and examined by histopathological analysis, real-time quantitative polymerase chain reaction, and immunoblotting. Results: Our results showed that CBD treatment of AGS cells significantly reduced the H. pylori-induced elevations of interleukin-8, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). In the animal model, CBD treatment inhibited the colonization of H. pylori and the levels of malondialdehyde, inflammation, proinflammatory cytokines, iNOS, and COX-2 in gastric tissues. CBD also decreased the phosphorylation levels of p38 mitogen-activated protein kinase family. Conclusions: This study suggests that CBD might be a prospective candidate for treating H. pylori-induced gastric injury.

Mechanistic target of rapamycin and an extracellular signaling-regulated kinases 1 and 2 signaling participate in the process of acetate regulating lipid metabolism and hormone-sensitive lipase expression

  • Li, Yujuan;Fu, Chunyan;Liu, Lei;Liu, Yongxu;Li, Fuchang
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1444-1453
    • /
    • 2022
  • Objective: Acetate plays an important role in host lipid metabolism. However, the network of acetate-regulated lipid metabolism remains unclear. Previous studies show that mitogen-activated protein kinases (MAPKs) and mechanistic target of rapamycin (mTOR) play a crucial role in lipid metabolism. We hypothesize that acetate could affect MAPKs and/or mTOR signaling and then regulate lipid metabolism. The present study investigated whether any cross talk occurs among MAPKs, mTOR and acetate in regulating lipid metabolism. Methods: The ceramide C6 (an extracellular signaling-regulated kinases 1 and 2 [ERK1/2] activator) and MHY1485 (a mTOR activator) were used to treat rabbit adipose-derived stem cells (ADSCs) with or without acetate, respectively. Results: It indicated that acetate (9 mM) treatment for 48 h decreased the lipid deposition in rabbit ADSCs. Acetate treatment decreased significantly phosphorylated protein levels of ERK1/2 and mTOR but significantly increased mRNA level of hormone-sensitive lipase (HSL). Acetate treatment did not significantly alter the phosphorylated protein level of p38 MAPK and c-Jun aminoterminal kinase (JNK). Activation of ERK1/2 and mTOR by respective addition in media with ceramide C6 and MHY1485 significantly attenuated decreased lipid deposition and increased HSL expression caused by acetate. Conclusion: Our results suggest that ERK1/2 and mTOR signaling pathways are associated with acetate regulated HSL gene expression and lipid deposition.

Gynostemma pentaphyllum extract and its active component gypenoside L improve the exercise performance of treadmill-trained mice

  • Kim, Yoon Hee;Jung, Jae In;Jeon, Young Eun;Kim, So Mi;Hong, Su Hee;Kim, Tae Young;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.16 no.3
    • /
    • pp.298-313
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: The effectiveness of natural compounds in improving athletic ability has attracted attention in both sports and research. Gynostemma pentaphyllum (Thunb.) leaves are used to make traditional herbal medicines in Asia. The active components of G. pentaphyllum, dammarane saponins, or gypenosides, possess a range of biological activities. On the other hand, the anti-fatigue effects from G. pentaphyllum extract (GPE) and its effective compound, gypenoside L (GL), remain to be determined. MATERIALS/METHODS: This study examined the effects of GPE on fatigue and exercise performance in ICR mice. GPE was administered orally to mice for 6 weeks, with or without treadmill training. The biochemical analysis in serum, glycogen content, mRNA, and protein expressions of the liver and muscle were analyzed. RESULTS: The ExGPE (exercise with 300 mg/kg body weight/day of GPE) mice decreased the fat mass percentage significantly compared to the ExC mice, while the ExGPE showed the greatest lean mass percentage compared to the ExC group. The administration of GPE improved the exercise endurance and capacity in treadmill-trained mice, increased glucose and triglycerides, and decreased the serum creatine kinase and lactate levels after intensive exercise. The muscle glycogen levels were higher in the ExGPE group than the ExC group. GPE increased the level of mitochondrial biogenesis by enhancing the phosphorylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein and the mRNA expression of nuclear respiratory factor 1, mitochondrial DNA, peroxisome proliferator-activated receptor-δ, superoxide dismutase 2, and by decreasing the lactate dehydrogenase B level in the soleus muscle (SOL). GPE also improved PGC-1α activation in the SOL significantly through AMPK/p38 phosphorylation. CONCLUSIONS: These results showed that GPE supplementation enhances exercise performance and has anti-fatigue activity. In addition, the underlying molecular mechanism was elucidated. Therefore, GPE is a promising candidate for developing functional foods and enhancing the exercise capacity and anti-fatigue activity.

Inhibitory Effect of Pinus rigida × Pinus taeda on Melanogenesis in B16 F10 Cells

  • Woo-Jin Oh;Seo-Yoon Park;Tae-Won Jang;So-Yeon Han;Da-Yoon Lee;Se Chul Hong;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.56-56
    • /
    • 2023
  • The cone of Pinus rigida × Pinus taeda (PRT), a plant in the Pinaceae family, has long been used in traditional medicine to treat hemostasis, bruises, and burns. Previous research has shown that regulating oxidation-reduction reactions in reactive oxygen species can help inhibit melanogenesis, the process of melanin synthesis, which is a common target for addressing hyperpigmentation. Inhibiting tyrosinase is also known to be effective in this regard. Based on these findings, we conducted an investigation into the inhibitory effect of the ethyl acetate fraction of PRT (ERT) on melanogenesis in B16 F10 cells. We know that the expression levels of melanin biosynthesis-related proteins, including tyrosinase, TRP-1, and TRP-2, are regulated by MITF (microphthalmia-associated transcription factor) and cAMP, with cAMP affecting the activity of protein kinase A (PKA). PKA can reduce melanogenesis, and CREB reduces the phosphorylation of melanin-producing enzymes. In addition, the MAPK signaling pathway, composed of ERK, JNK, p38, and other factors, is also known to play a role in the inhibition of melanogenesis in melanocytes. Our immunoblotting results showed that ERT inhibited the expression of melanin production-related proteins (tyrosinase, TRP-1, TRP-2, and MITF) that were significantly increased by a-MSH treatment to promote melanin production. Furthermore, the phosphorylation levels of factors related to cAMP/PKA/CREB and MAPK signaling pathways were significantly reduced without affecting the total form. In conclusion, we believe that treatment with ERT can inhibit melanin synthesis by modulating the phosphorylation of cAMP/PKA/CREB and MAPK signaling pathways at the cellular level. These findings suggest the potential of ERT as a raw material for functional cosmetics and pharmaceuticals, thanks to its antioxidant activity and ability to inhibit melanogenesis. We thought that these findings of ERT as a natural plant resource will inspire further research and development in this area.

  • PDF

Avenanthramide-C Shows Potential to Alleviate Gingival Inflammation and Alveolar Bone Loss in Experimental Periodontitis

  • Su-Jin Kim;Se Hui Lee;Binh Do Quang;Thanh-Tam Tran;Young-Gwon Kim;Jun Ko;Weon-Young Choi;Sun Young Lee;Je-Hwang Ryu
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.627-636
    • /
    • 2023
  • Periodontal disease is a chronic inflammatory disease that leads to the gradual destruction of the supporting structures of the teeth including gums, periodontal ligaments, alveolar bone, and root cementum. Recently, interests in alleviating symptoms of periodontitis (PD) using natural compounds is increasing. Avenanthramide-C (Avn-C) is a polyphenol found only in oats. It is known to exhibit various biological properties. To date, the effect of Avn-C on PD pathogenesis has not been confirmed. Therefore, this study aimed to verify the protective effects of Avn-C on periodontal inflammation and subsequent alveolar bone erosion in vitro and in vivo. Upregulated expression of catabolic factors, such as matrix metalloproteinase 1 (MMP1), MMP3, interleukin (IL)-6, IL-8, and COX2 induced by lipopolysaccharide and proinflammatory cytokines, IL-1β, and tumor necrosis factor α (TNF-α), was dramatically decreased by Avn-C treatment in human gingival fibroblasts and periodontal ligament cells. Moreover, alveolar bone erosion in the ligature-induced PD mouse model was ameliorated by intra-gingival injection of Avn-C. Molecular mechanism studies revealed that the inhibitory effects of Avn-C on the upregulation of catabolic factors were mediated via ERK (extracellular signal-regulated kinase) and NF-κB pathway that was activated by IL-1β or p38 MAPK and JNK signaling that was activated by TNF-α, respectively. Based on this study, we recommend that Avn-C may be a new natural compound that can be applied to PD treatment.

Lessons From the Success and Failure of Targeted Drugs for Rheumatoid Arthritis: Perspectives for Effective Basic and Translational Research

  • Mingyo Kim;Yong-ho Choe;Sang-il Lee
    • IMMUNE NETWORK
    • /
    • v.22 no.1
    • /
    • pp.8.1-8.20
    • /
    • 2022
  • Rheumatoid arthritis (RA) is a representative autoimmune disease that is primarily characterized by persistent inflammation and progressive destruction of synovial joints. RA has a complex and heterogeneous pathophysiology, involving interactions among various immune and joint stromal cells and a diverse network of cytokines and intracellular signaling pathways. With improved understanding of RA, over the past decades, therapeutic strategies have become considerably advanced and now included targeted molecular therapies, such as tumor necrosis factor inhibitors, IL-6 blockers, B-cell depletion agents, as well as inhibitors of T-cell co-stimulation and Janus kinases. However, a considerable proportion of RA patients experience refractory disease and interrupted treatment owing to the associated risk of developing serious infections and cancers. In contrast, although IL-1β, IL-17A, and p38α play significant roles in RA pathogenesis, several drugs targeting these factors have not been approved because of their low efficacy and severe adverse effects. In this review, we provide an overview of the working mechanism, advantages, and limitations of the currently available targeted drugs for RA. Additionally, we suggest potential mechanistic causes for clinically approved and failed drugs. Thus, this review provides perspectives on approaches for basic and translational studies that hold promise for identifying future next-generation therapeutics for RA.

Anti-inflammatory Activities Verification of Ambrosia trifida L. extract in RAW 264.7 Cells (RAW 264.7 세포에서의 단풍잎돼지풀 추출물의 항염증 활성 검증)

  • Yoo, Dan-Hee;Lee, Jin-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.79-89
    • /
    • 2020
  • This study was performed to evaluate the anti-inflammatory activities of 70% ethanol extract from Ambrosia trifida L. (AT). The electron donating ability and ABTS+ radical scavenging ability of extract from AT was shown to be 84.1% and 92.5% at 1,000 ㎍/ml concentration. The astringent effect of extract from AT was shown to be 94.7% at 1,000 ㎍/ml. The anti- inflammatory activities of extract of AT were investigated using RAW 264.7 cells induced by lipopolysaccharide (LPS). The cell toxicity effect of AT extract on RAW 264.7 performed MTT assay. As a result of the measured cell toxicity effect, 90% or more was shown with cell viability at a 500 ㎍/ml concentration. In nitric oxide synthesis inhibition effect, it was shown that extract from AT concentration dependent inhibited nitric oxide production. The protein expression inhibitory effect of AT extract was measured by western blot at 25, 50, and 100 ㎍/ml concentration and the β-actin used as a positive control. Consequently, the inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 protein expression inhibitory effect was decreased by 8.6%, 25.1% at 100 ㎍/ml concentration. The phosphorylation of extracellular signal-regulated kinase 1/2, p38, c-Jun NH2-terminal kinase and Iκ-Bα protein expression inhibitory effect was a decreased dependent concentration. The mRNA expression inhibitory effect was measured by reverse transcription - polymerase chain reaction at 25, 50, and 100 ㎍/ml concentration and the glyceraldehyde-3-phosphate dehydrogenase used as a positive control. Consequently, the iNOS, COX-2, interleukin (IL)-1β, IL-6 and tumor necrosis factor-α mRNA expression inhibition effect was a decreased dependent concentration in an LPS-activated macrophage. In conclusion, AT extract may have some effects on inflammatory factors as potential anti-inflammatory agents and natural substance for cosmetics.

The Effects of Retinoic Acid and MAPK Inhibitors on Phosphorylation of Smad2/3 Induced by Transforming Growth Factor β1

  • Lee, Sang Hoon;Shin, Ju Hye;Shin, Mi Hwa;Kim, Young Sam;Chung, Kyung Soo;Song, Joo Han;Kim, Song Yee;Kim, Eun Young;Jung, Ji Ye;Kang, Young Ae;Chang, Joon;Park, Moo Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.82 no.1
    • /
    • pp.42-52
    • /
    • 2019
  • Background: Transforming growth factor ${\beta}$ (TGF-${\beta}$), retinoic acid (RA), p38 mitogen-activated protein kinase (MAPK), and MEK signaling play critical roles in cell differentiation, proliferation, and apoptosis. We investigated the effect of RA and the role of these signaling molecules on the phosphorylation of Smad2/3 (p-Smad2/3) induced by TGF-${\beta}1$. Methods: A549 epithelial cells and CCD-11Lu fibroblasts were incubated and stimulated with or without all-trans RA (ATRA) and TGF-${\beta}1$ and with MAPK or MEK inhibitors. The levels of p-Smad2/3 were analyzed by western blotting. For animal models, we studied three experimental mouse groups: control, bleomycin, and bleomycin+ATRA group. Changes in histopathology, lung injury score, and levels of TGF-${\beta}1$ and Smad3 were evaluated at 1 and 3 weeks. Results: When A549 cells were pre-stimulated with TGF-${\beta}1$ prior to RA treatment, RA completely inhibited the p-Smad2/3. However, when A549 cells were pre-treated with RA prior to TGF-${\beta}1$ stimulation, RA did not completely suppress the p-Smad2/3. When A549 cells were pre-treated with MAPK inhibitor, TGF-${\beta}1$ failed to phosphorylate Smad2/3. In fibroblasts, p38 MAPK inhibitor suppressed TGF-${\beta}1$-induced p-Smad2. In a bleomycin-induced lung injury mouse model, RA decreased the expression of TGF-${\beta}1$ and Smad3 at 1 and 3 weeks. Conclusion: RA had inhibitory effects on the phosphorylation of Smad induced by TGF-${\beta}1$ in vitro, and RA also decreased the expression of TGF-${\beta}1$ at 1 and 3 weeks in vivo. Furthermore, pre-treatment with a MAPK inhibitor showed a preventative effect on TGF-${\beta}1$/Smad phosphorylation in epithelial cells. As a result, a combination of RA and MAPK inhibitors may suppress the TGF-${\beta}1$-induced lung injury and fibrosis.

Structural basis of novel TRP14, thioredoxin-related protein that regulates TNE-$\alpha$ signaling pathways

  • Woo, Joo-Rang;Jeong, Woo-Jin;Rhee, Sue-Goo;Ryu, Seong-Eon
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.18-18
    • /
    • 2003
  • Thioredoxin (Trx) is a small redox protein that is ubiquitously distributed from achaes to human. In diverse organisms, the protein is involved in various physiological roles by acting as electron donor and regulators of transcription and apoptosis as well as antioxidants. Sequences of Trx within various species are 27~69% identical to that of E. coli and all Trx proteins have the same overall fold, which consists of central five β strands surrounded by four α helices. The N-terminal cysteine in WCGPC motif of Trx is redox sensitive and the motif is highly conserved. Compared with general cysteine, the N-terminal cysteine has low pKa value. The result leads to increased reduction activity of protein. Recently, novel thio.edoxin-related protein (TRP14) was found from rat brain. TRP14 acts as disulfide reductase like Trx1, and its redox potential and pKa are similar to those of Trx1. However, TRP14 takes up electrons from cytosolic thioredoxin reductase (TrxR1), not from the mitochondrial thioredoxin reductase (TrxR2). Biological roles of TES14 were reported to be involved in regulating TNF-α induced signaling pathways in different manner with Trx1. In depletion experiments, depletion of TRP14 increased TNF-α induced phosphorylation and degradation of IκBα more than the depletion Trx1 did. It also facilitated activation of JNK and p38 MAP kinase induced by TNF-α. Unlike Trx1, TRP14 shows neither interaction nor interference with ASK1. Here, we determined three-dimensional crystal structure of TRP14 by MAD method at 1.8Å. The structure reveals that the conserved cis-Pro (Pro90) and active site-W-C-X-X-C motif, which may be involved in substrate recognition similar to Trx1 , are located at the beginning position of strand β4 and helix α2, respectively. The TRP14 structure also shows that surface of TRP14 in the vicinity of the active site, which is surrounded by an extended flexible loop and an additional short a helix, is different from that of Trx1. In addition, the structure exhibits that TRP14 interact with a distinct target proteins compared with Trx1 and the binding may depend mainly on hydrophobic and charge interactions. Consequently, the structure supports biological data that the TRP14 is involved in regulating TNF-α induced signaling pathways in different manner with Trx1.

  • PDF