• Title/Summary/Keyword: p38 MAPK signaling pathway

Search Result 155, Processing Time 0.032 seconds

Cisplatin Suppresses Proliferation of Ovarian Cancer Cells through Inhibition Akt and Modulation MAPK Pathways (Cisplatin의 난소암 세포 증식 억제에 관한 신호 전달 기전)

  • Choi, Jae-Sun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.62-68
    • /
    • 2020
  • Cisplatin (CDDP) is a chemotherapy agent used for patients with ovarian cancers. CDDP activates multiple signaling pathways, which causes various cellular reactions according to the type of cancer cells. Therefore, it is difficult to clearly conclude its signaling pathways. The purpose of this study is to determine the role of the signal protein of Akt/ERK1/2 and MAPK by CDDP-induced apoptosis in ovarian cancer cells (SKOV3). As a result, the number of apoptosis increased according to the TUNEL assay, and flow cytometric analysis confirmed that the percentage of sub-G1 early apoptosis was 8.73% higher than the control. The PARP and caspase-3 activity that appeared in the process of apoptosis was increased and the Bcl-2 expression was decreased. It was verified that the Akt and ERK1/2 activity was decreased, and p38 and JNK activity increased in a time dependent fashion. In conclusion, these results demonstrate that cisplatin inhibits the proliferation of ovarian cancer cells by inhibiting Akt activity and induces apoptosis by modulating the MAPK signaling pathway. However, a decrease in the ERK1/2 activity by CDDP was the opposite result to the result shown from the HeLa cells. For this reason, further research on signaling pathways is necessary. These results are expected to be useful for ovarian cancer treatment strategies targeting the MAPK pathway.

Screening of the Bufonis Venenum on Hep G2 Cells (섬여가 간암(肝癌) 세포주 Hep G2에 미치는 효과)

  • Kang, A-my;Kim, Bo-Ram;Kim, Sung-Uk;Lim, Seong-Woo
    • The Journal of Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.171-179
    • /
    • 2008
  • Objective: Bufonis Venenum is the traditional Korean medicine Chan Su, which is obtained from the skin and parotid venom gland of the toads. It has been used for myocardial diseases, inflammation diseases, pain relief, cancer and others. The main components of BV are cinobufotoxin, cinobufalin, bufalin and others. Of these, bufalin, the major active ingredient of BV, has been reported to induce apoptosis and to possess anti-tumor effects. There was no report of anti-tumor screening of BV on hepatic cancer and which signaling pathway can be involved. In order to examine the effect of BV on hepatic cancer and the related signaling pathway with BV-induced apoptosis, human Hep G2 cells were used. Methods: Analysis of apoptosis was confirmed by MTT assay. BV decreased cell viability in a dose and duration dependent manner. To observe which signaling molecules will be activated by BV, phosphorylation of MAPK (p38, ERK, JNK), caspase 8 and caspase 9 were examined by Western blot analysis. Results: The phosphorylation levels of p38 started to increase at 5 min after addition of 5 ${\mu}g$/ml of BV and sustained to increase until 48 hours. The phosphorylation levels of other MAPK (ERK and JNK), caspase 8 and caspase 9 increased in a time-dependent manner. These imply that BV may activate different signaling pathways, MAPK, caspase 8 and caspase 9. These results propose that BV may induce apoptosis on Hep G2 cells through the activation of MAPK, caspase 8 and caspase 9.

  • PDF

EP2 Induces p38 Phosphorylation via the Activation of Src in HEK 293 Cells

  • Chun, Kyung-Soo;Shim, Minsub
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.539-548
    • /
    • 2015
  • Prostaglandin $E_2$ ($PGE_2$), a major product of cyclooxygenase, binds to four different prostaglandin $E_2$ receptors (EP1, EP2, EP3, and EP4) which are G-protein coupled transmembrane receptors (GPCRs). Although GPCRs including EP receptors have been shown to be associated with their specific G proteins, recent evidences suggest that GPCRs can regulate MAPK signaling via non-G protein coupled pathways including Src. EP2 is differentially expressed in various tissues and the expression of EP2 is induced by extracellular stimuli. We hypothesized that an increased level of EP2 expression may affect MAPK signaling. The overexpression of EP2 in HEK 293 cells resulted in significant increase in intracellular cAMP levels response to treatment with butaprost, a specific EP2 agonist, while overexpression of EP2 alone did not increase intracellular cAMP levels. However, EP2 overexpression in the absence of $PGE_2$ induced an increase in the level of p38 phosphorylation as well as the kinase activity of p38, suggesting that up-regulation of EP2 may promote p38 activation via non-G protein coupled pathway. Inhibition of Src completely blocked EP2-induced p38 phosphorylation and overexpression of Src increased the level of p38 phosphorylation, indicating that Src is upstream kinase for EP2-induced p38 phosphorylation. EP2 overexpression also increased the Src activity and EP2 protein was co-immunoprecipitated with Src. Furthermore, sequential co-immunoprecipitation studies showed that EP2, Src, and ${\beta}$-arrestin can form a complex. Our study found a novel pathway in which EP2 is associated with Src, regulating p38 pathway.

Effects of G-Rh2 on mast cell-mediated anaphylaxis via AKT-Nrf2/NF-κB and MAPK-Nrf2/NF-κB pathways

  • Xu, Chang;Li, Liangchang;Wang, Chongyang;Jiang, Jingzhi;Li, Li;Zhu, Lianhua;Jin, Shan;Jin, Zhehu;Lee, Jung Joon;Li, Guanhao;Yan, Guanghai
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.550-560
    • /
    • 2022
  • Background: The effect of ginsenoside Rh2 (G-Rh2) on mast cell-mediated anaphylaxis remains unclear. Herein, we investigated the effects of G-Rh2 on OVA-induced asthmatic mice and on mast cell-mediated anaphylaxis. Methods: Asthma model was established for evaluating airway changes and ear allergy. RPMCs and RBL-2H3 were used for in vitro experiments. Calcium uptake, histamine release and degranulation were detected. ELISA and Western blot measured cytokine and protein levels, respectively. Results: G-Rh2 inhibited OVA-induced airway remodeling, the production of TNF-α, IL-4, IL-8, IL-1β and the degranulation of mast cells of asthmatic mice. G-Rh2 inhibited the activation of Syk and Lyn in lung tissue of OVA-induced asthmatic mice. G-Rh2 inhibited serum IgE production in OVA induced asthmatic mice. Furthermore, G-Rh2 reduced the ear allergy in IgE-sensitized mice. G-Rh2 decreased the ear thickness. In vitro experiments G-Rh2 significantly reduced calcium uptake and inhibited histamine release and degranulation in RPMCs. In addition, G-Rh2 reduced the production of IL-1β, TNF-α, IL-8, and IL-4 in IgE-sensitized RBL-2H3 cells. Interestingly, G-Rh2 was involved in the FcεRI pathway activation of mast cells and the transduction of the Lyn/Syk signaling pathway. G-Rh2 inhibited PI3K activity in a dose-dependent manner. By blocking the antigen-induced phosphorylation of Lyn, Syk, LAT, PLCγ2, PI3K ERK1/2 and Raf-1 expression, G-Rh2 inhibited the NF-κB, AKT-Nrf2, and p38MAPK-Nrf2 pathways. However, G-Rh2 up-regulated Keap-1 expression. Meanwhile, G-Rh2 reduced the levels of p-AKT, p38MAPK and Nrf2 in RBL-2H3 sensitized IgE cells and inhibited NF-κB signaling pathway activation by activating the AKT-Nrf2 and p38MAPK-Nrf2 pathways. Conclusion: G-Rh2 inhibits mast cell-induced allergic inflammation, which might be mediated by the AKT-Nrf2/NF-kB and p38MAPK-Nrf2/NF-κB signaling pathways.

Regulation of Chicken FABP4 Transcription by Toll-Like Receptor 3 Activation in DF-1 Cells

  • Jae Rung So;Sujung Kim;Ki-Duk Song
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.283-291
    • /
    • 2023
  • Long-chain fatty acids (LCFAs) are vital in cellular compartments, primarily regulating lipid metabolism. Fatty Acid-Binding Proteins (FABPs) facilitate LCFA transport, lipid synthesis, storage, and act as signaling molecules influencing various pathways, including inflammation. FABP4, in particular, is linked to vascular and cardio-related diseases, and it plays a role in macrophage-mediated inflammatory responses. Previous studies have identified FABP4 as not only a representative biomarker for lipogenesis but also as having correlations with immune responses. This study aims to investigate the regulation of the chicken FABP4 (chFABP4) gene by toll-like receptor 3 (TLR3) activation and determine the signaling pathways that are involved in chFABP4 transcriptional regulation. We analyzed the transcriptional regulation of chFABP4 in TLR3-stimulated DF-1 cells. The results showed that chFABP4 was up-regulated upon stimulation with polyinosinic-polycytidylic acid (PIC), a TLR3 ligand. Notably, chFABP4 transcription was independently regulated in the NF-κB signaling pathway. It was up-regulated in p38 inhibition, demonstrating that the p38 signaling pathway might suppress the transcription of chFABP4 within TLR3-activated DF-1 cells. In contrast, chFABP4 expression was down-regulated in JNK signaling pathway inhibition, suggesting the positive regulation of JNK signaling pathway for chFABP4 transcription in DF-1 cells in response to TLR3 activation, consistent with findings in macrophages. MEK pathway inhibition resulted in a similar regulation to NF-κB signaling. These results suggest that each MAPK contributes differentially to the transcriptional regulation of chFABP4 by in DF-1 cells in response to TLR3 activation.

The Activity of Protein Kinases on the Endothelin-1-induced Muscle Contraction and the relationship of Physical Therapy (Endothelin-1-유도 근수축에 관여하는 부활효소의 활성과 물리치료의 상관성)

  • Kim, Mi-Sun;Kim, Il-Hyun;Hwang, Byong-Yong;Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.53-59
    • /
    • 2008
  • Purpose: The non-receptor-type protein tyrosine kinase Syk (636 amino acids, 72 kDa) is ubiquitously expressed in hematopoietic stem cells and has been widely studied as a regulator and effector of B cell receptor signaling that occurs in processes such as differentiation, proliferation and apoptosis. However, the mechanism relating Syk and p38 mitogen-activated protein kinases (p38MAPK) by endothelin-1 (ET-1, 21 amino acids) stimulation in muscle cells, especially in the volume-dependent hypertensive state, remains unclear. Methods: In this study, we investigated the relationship between Syk and p38MAPK for isometric contraction and enzymatic activity by ET-1 from rat aortic smooth muscle cells and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive state rats (ADHR). Results: The systolic blood pressure was significantly increased in ADHR than in a control group of animals. ET-1 induced isometric contraction and phosphorylation of p38MAPK, which was increased in muscle strips from ADHR. Increased vasoconstriction and phosphorylation of p38MAPK induced by treatment with 30 nM ET-1 were inhibited by the use of 10${\mu}M$ SB203580, an inhibitor of p38MAPK from ADHR. Furthermore, ET-1 induced isometric contraction and phosphorylation of Syk and p38MAPK, which were increased in the aortic smooth muscle cells. Increased tension and phosphorylation of Syk and p38MAPK induced by ET-1 were inhibited by SB203580 from rat aortic smooth muscle cells. Conclusion: These results, suggest that the Syk activity affects ET-1-induced contraction through p38MAPK in smooth muscle cells and that the same pathway directly or indirectly is associated with volume dependent hypertension. The findings suggest the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

Synergistic Effect of Hydrogen and 5-Aza on Myogenic Differentiation through the p38 MAPK Signaling Pathway in Adipose-Derived Mesenchymal Stem Cells

  • Wenyong Fei;Erkai Pang;Lei Hou;Jihang Dai;Mingsheng Liu;Xuanqi Wang;Bin Xie;Jingcheng Wang
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.78-92
    • /
    • 2023
  • Background and Objectives: This study aims to clarify the systems underlying regulation and regulatory roles of hydrogen combined with 5-Aza in the myogenic differentiation of adipose mesenchymal stem cells (ADSCs). Methods and Results: In this study, ADSCs acted as an in vitro myogenic differentiating mode. First, the Alamar blue Staining and mitochondrial tracer technique were used to verify whether hydrogen combined with 5-Aza could promote cell proliferation. In addition, this study assessed myogenic differentiating markers (e.g., Myogenin, Mhc and Myod protein expressions) based on the Western blotting assay, analysis on cellular morphological characteristics (e.g., Myotube number, length, diameter and maturation index), RT-PCR (Myod, Myogenin and Mhc mRNA expression) and Immunofluorescence analysis (Desmin, Myosin and 𝛽-actin protein expression). Finally, to verify the mechanism of myogenic differentiation of hydrogen-bound 5-Aza, we performed bioinformatics analysis and Western blot to detect the expression of p-P38 protein. Hydrogen combined with 5-Aza significantly enhanced the proliferation and myogenic differentiation of ADSCs in vitro by increasing the number of single-cell mitochondria and upregulating the expression of myogenic biomarkers such as Myod, Mhc and myotube formation. The expressions of p-P38 was up-regulated by hydrogen combined with 5-Aza. The differentiating ability was suppressed when the cells were cultivated in combination with SB203580 (p38 MAPK signal pathway inhibitor). Conclusions: Hydrogen alleviates the cytotoxicity of 5-Aza and synergistically promotes the myogenic differentiation capacity of adipose stem cells via the p38 MAPK pathway. Thus, the mentioned results present insights into myogenic differentiation and are likely to generate one potential alternative strategy for skeletal muscle related diseases.

Nypa fruticans Wurmb Exerts Anti-Inflammatory Effects through NF-kB and MAPK Signaling Pathway

  • Hye-Jeong Park;So-Yeon Han;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.56-56
    • /
    • 2021
  • Nypa fruticans Wurmb is a mangrove plant belonging to Araceae family. N. fruticans is typically found in Southeast Asia, and in some parts of Queensland, Australia. N. fruticans has phytochemicals, phenolics, and flavonoids. In this study, we investigated the anti-inflammatory effects of the ethyl acetate fraction of N. fruticans (ENF) on the production and expression of cytokines and inflammatory mediators through the major signal transduction pathways. ENF attenuated the level of cytokines in a dose-dependent manner and decreased the production of nitric oxide (NO). ENF decreased the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) via alleviating transcription of nuclear factor-kappa B (NF-κB) by an inhibitor of nuclear factor-kappa B (IκB) degradation. Furthermore, mitogen-activated protein kinase (MAPK) signaling pathways (ERK1/2, JNK1/2, and p38) are known to be involved in the inflammatory response. Phosphorylations of ERK1/2, JNK1/2, and p38 were significantly decreased compared with the ENF-untreated control. Conclusively, ENF was related to alleviating various pro-inflammatory mediators through IκB/NF-κB and MAPK signaling pathways, including p65 translocation to the nucleus.

  • PDF

Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis

  • Jeong, Ji Eun;Park, Jae Hyun;Kim, Chun Soo;Lee, Sang Lak;Chung, Hai Lee;Kim, Woo Taek;Lee, Eun Joo
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.6
    • /
    • pp.181-188
    • /
    • 2017
  • Purpose: Hypoxic-ischemic encephalopathy is a significant cause of neonatal morbidity and mortality. Erythropoietin (EPO) is emerging as a therapeutic candidate for neuroprotection. Therefore, this study was designed to determine the neuroprotective role of recombinant human EPO (rHuEPO) and the possible mechanisms by which mitogen-activated protein kinase (MAPK) signaling pathway including extracellular signal-regulated kinase (ERK1/2), JNK, and p38 MAPK is modulated in cultured cortical neuronal cells and astrocytes. Methods: Primary neuronal cells and astrocytes were prepared from cortices of ICR mouse embryos and divided into the normoxic, hypoxia (H), and hypoxia-pretreated with EPO (H+EPO) groups. The phosphorylation of MAPK pathway was quantified using western blot, and the apoptosis was assessed by caspase-3 measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: All MAPK pathway signals were activated by hypoxia in the neuronal cells and astrocytes (P<0.05). In the neuronal cells, phosphorylation of ERK-1/-2 and apoptosis were significantly decreased in the H+EPO group at 15 hours after hypoxia (P<0.05). In the astrocytes, phosphorylation of ERK-1/-2, p38 MAPK, and apoptosis was reduced in the H+EPO group at 15 hours after hypoxia (P<0.05). Conclusion: Pretreatment with rHuEPO exerts neuroprotective effects against hypoxic injury reducing apoptosis by caspase-dependent mechanisms. Pathologic, persistent ERK activation after hypoxic injury may be attenuateed by pretreatment with EPO supporting that EPO may regulate apoptosis by affecting ERK pathways.

Inhibitory Effects of the Roots of Cudrania tricuspidata Bureau on Osteoclast Differentiation (꾸지뽕나무 뿌리 추출물의 파골세포 분화 억제 효과)

  • Kim, Yu-Gyeong;Jeong, Gil-Saeng
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.2
    • /
    • pp.155-159
    • /
    • 2017
  • Cudrania tricuspidata Bureau (Moraceae) is a traditional oriental medicine that has been widely used as anti-oxidant, anti-inflammatory and immunomodulatory in Korea. This study was performed that the 70% ethanol extract of the roots of C. tricuspidata (CTE) suppressed receptor activator of NF-${\kappa}B$ ligand (RANKL)-induced osteoclastogenesis, actin ring formation in RAW 264.7 cell lines. CTE significantly inhibited the JNK/mitogen-activated protein kinase (MAPK) signaling pathway without affecting ERK and p38 signaling in RANKL-stimulated RAW 264.7 cells. Also, CTE inhibited RANKL-induced expression of c-Fos, an upstream activator of NFATc1. Consequently, CTE suppresses osteoclast differentiation by inhibiting RANKL induced MAPK signaling pathways and disrupts the actin rings in mature osteoclasts. Thus, CTE can be used for the development of osteoporosis treatment drug with a natural material.