• Title/Summary/Keyword: p38$TNF-{\alpha}$

Search Result 230, Processing Time 0.021 seconds

Role of p38 MAPK in the Regulation of Apoptosis Signaling Induced by TNF-α in Differentiated PC12 Cells

  • Park, Jung-Gyu;Yuk, Youn-Jung;Rhim, Hye-When;Yi, Seh-Yoon;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.267-272
    • /
    • 2002
  • TNF-$\alpha$ elicits various responses including apoptosis, proliferation, and differentiation according to cell type. In neuronal PC12 cells, TNF-$\alpha$ induces moderate apoptosis while lipopolysarccaharide or trophic factor deprivation can potentiate apoptosis that is induced by TNF-$\alpha$. TNF-$\alpha$ initiates various signal transduction pathways leading to the activation of the caspase family, NF-${\kappa}B$, Jun N-terminal kinase, and p38 MAPK via the death domain that contains the TNF-$\alpha$ receptor. Inhibition of translation using cycloheximide greatly enhanced the apoptotic effect of TNF-$\alpha$. This implies that the induction of anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic genes for survival by TNF-$\alpha$ may be able to protect PC12 cells from apoptosis. Accordingly, Bcl-2, an anti-apoptotic Bcl-2 family member, was highly expressed in response to TNF-$\alpha$. In this study, we examined the anti-apoptotic role of p38 MAPK that is activated by TNF-$\alpha$ in neuronal PC12 cells. The phosphorylation of p38 MAPK in response to TNF-$\alpha$ slowly increased and lasted several hours in the PC12 cell and DRG neuron. This specific inhibitor of p38 MAPK, SB202190, significantly enhanced the apoptosis that was induced by TNF-$\alpha$ in PC12 cells. This indicates that the activation of p38 MAPK could protect PC12 cells from apoptosis since there is no known role of p38 MAPK in resoonse to TNF-$\alpha$ in neuron. This discovery could be evidence for the neuroprotective role of the p38 MAPK.

Biological Activity of Tumor Necrosis Factor-α Secreted from Smooth Muscle Cell Overexpressing FADD (FADD 과발현 평활근세포에서 분비하는 Turner Necrosis Factor-α의 작용)

  • Kim, Sun-Mi;Lee, Kyeong-Ah;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.45-50
    • /
    • 2007
  • This study investigated biological activity of tumor necrosis factor $(TNF)-\alpha$ secreted from smooth muscle cell (SMC) destined for death by expressing Fas associated death domain containing protein (FADD) (FADD-SMC) when the cells are grown without tetracycline in culture medium. In the absence of tetracycline the FADD-SMC secreted approximately 1000 pg/ml $TNF-\alpha$, whereas hardly detectable amount of the cytokine existed in the presence of tetracycline. The culture medium collected from the FADD-SMC grown in the absence of tetracycline increased phosphorylated form of p38 MAPK and up-regulated nuclear factor kappa B (NF-kB). The medium collected without tetracycline also caused death of L929 cells. Depletion of $TNF-\alpha$ with the soluble TNF receptor (sTNFR) inhibited the phosphorylation of p38 MAPK, the up-regulation of NF-kB activity and the death activity of the medium collected from FADD-SMC in the absence of tetracycline. These results indicate that $TNF-\alpha$ secreted from SMC undergoing death is biologically active and can affect cellular function.

Blockade of p38 Mitogen-activated Protein Kinase Pathway Inhibits Interleukin-6 Release and Expression in Primary Neonatal Cardiomyocytes

  • Chae, Han-Jung;Kim, Hyun-Ki;Lee, Wan-Ku;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.6
    • /
    • pp.319-325
    • /
    • 2002
  • The induction of interleukin-6 (IL-6) using combined proinflammatory agents $(LPS/IFN-{\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ was studied in relation to p38 mitogen-activated protein kinase (MAPK) and $NF-{\kappa}B$ transcriptional factor in primary neonatal cardiomyocytes. When added to cultures of cardiomyocytes, the combined agents $(LPS/IFN-[\gamma}\;or\;TNF-{\alpha}/IFN-{\gamma})$ had stimulatory effect on the production of IL-6 and the elevation was significantly reduced by SB203580, a specific p38 MAPK inhibitor. SB203580 inhibited protein production and gene expression of IL-6 in a concentration-dependent manner. In this study, $IFN-{\gamma}$ enhancement of $TNF-{\alpha}-induced\;NF-{\kappa}B$ binding affinity as well as p38 MAP kinase activation was observed. However, a specific inhibitor of p38 MAPK, SB203580, had no effect on $TNF-{\alpha}/IFN-{\gamma}\;or\;LPS/IFN-{\gamma}-induced\;NF-{\kappa}B$ activation. This study strongly suggests that these pathways about $TNF-{\alpha}/IFN-{\gamma}$ or $LPS/IFN-{\gamma}-activated$ IL-6 release can be primarily dissociated in primary neonatal cardiomyocytes.

Identification of p54nrb and the 14-3-3 Protein HS1 as TNF-α-Inducible Genes Related to Cell Cycle Control and Apoptosis in Human Arterial Endothelial Cells

  • Stier, Sebastian;Totzke, Gudrun;Grunewald, Elisabeth;Neuhaus, Thomas;Fronhoffs, Stefan;Schoneborn, Silke;Vetter, Hans;Ko, Yon
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.447-456
    • /
    • 2005
  • TNF-$\alpha$ plays a pivotal role in inflammation processes which are mainly regulated by endothelial cells. While TNF-$\alpha$ induces apoptosis of several cell types like tumor cells, endothelial cells are resistant to TNFa mediated cell death. The cytotoxic effects of TNF-$\alpha$ on most cells are only evident if RNA or protein synthesis is inhibited, suggesting that de novo RNA or protein synthesis protect cells from TNF-$\alpha$ cytotoxicity, presumably by NF-${\kappa}B$ mediated induction of protective genes. However, the cytoprotective genes involved in NF-${\kappa}B$ dependent endothelial cell survival have not been sufficiently identified. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify rarely transcribed TNF-$\alpha$ inducible genes in human arterial endothelial cells related to cell survival and cell cycle. The TNF-$\alpha$-induced expression of the RNA binding protein $p54^{nrb}$ and the 14-3-3 protein HS1 as shown here for the first time may contribute to the TNF-$\alpha$ mediated cell protection of endothelial cells. These genes have been shown to play pivotal roles in cell survival and cell cycle control in different experimental settings. The concerted expression of these genes together with other genes related to cell protection and cell cycle like DnaJ, $p21^{cip1}$ and the ubiquitin activating enzyme E1 demonstrates the identification of new genes in the context of TNF-$\alpha$ induced gene expression patterns mediating the prosurvival effect of TNF-$\alpha$ in endothelial cells.

ERK mediated suppressive effects of Sophora flavescens on Tnf alpha production in BV2 microglial cells (BV2 microglial cells에서 ERK를 통한 고삼의 Tnf alpha 생성 억제효과)

  • Kim, Soo-Cheol;Han, Mi-Young;Park, Hae-Jeong;Jung, Kyung-Hee
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.147-153
    • /
    • 2007
  • Objectives : Sophora flavescens (SF) is widely used in traditional herbal medicine in Korea and is well recognized for its anti-inflammatory effect. However, its effect on Tumornecrosis factor alpha (Tnf) production in BV2 microglial cell is not yet known. Methods : We investigated the effect of SF on the production and expression of Tnf, a well known inflammatory mediator, in lipopolysaccaride (LPS)-activated BV2 microglial cells. Results : The LPS-induced Tnf production was markedly reduced by treatment with SF (50 ${\mu}g/ml$). In reverse transcription polymerase chain reaction (RT-PCR) analysis, SF suppressed the LPS activated expression of Tnf mRNA. In addition, Western blot analysis confirmed that SF suppressed the expression of Tnf. Sophora flavescens also inhibited the LPS-induced phosphylation of extracellular signal-regulated kinases (ERK), which mediate the Tnfproduction signaling pathway whereas LPS-induced phosphylation of p38 mitogen activated protein kinase (p38 MAPK), and c-Jun NH2-terminal kinases (JNK) was not inhibited by SF, which implies that SF suppresses LPS-induced Tnf production via the ERK mediated pathway. Conclusion : Taken together, these findings indicated that SF inhibits LPS-induce Tnf production, and that this inhibitory effect is mediated via the ERK pathway.

  • PDF

Redox Factor-1 Inhibits Cyclooxygenase-2 Expression via Inhibiting of p38 MAPK in the A549 Cells

  • Yoo, Dae-Goon;Kim, Cuk-Seong;Lee, Sang-Ki;Kim, Hyo-Shin;Cho, Eun-Jung;Park, Myoung-Soo;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.139-144
    • /
    • 2010
  • In this study, we evaluated the role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the tumor necrosis factor-$\alpha$ (TNF-$\alpha$) induced cyclooxygenase-2 (COX-2) expression using A549 lung adenocarcinoma cells. TNF-$\alpha$ induced the expression of COX-2 in A549 cells, but did not induce BEAS-2B expression. The expression of COX-2 in A549 cells was TNF-$\alpha$ dose-dependent (5~100 ng/ml). TNF-$\alpha$-stimulated A549 cells evidenced increased Ref-1 expression in a dose-dependent manner. The adenoviral transfection of cells with AdRef-1 inhibited TNF-$\alpha$-induced COX-2 expression relative to that seen in the control cells ($Ad{\beta}gal$). Pretreatment with $10\;{\mu}M$ of SB203580 suppressed TNF-$\alpha$-induced COX-2 expression, thereby suggesting that p38 MAPK might be involved in COX-2 expression in A549 cells. The phosphorylation of p38 MAPK was increased significantly after 5 minutes of treatment with TNF-$\alpha$, reaching a maximum level at 10 min which persisted for up to 60 min. However, p38MAPK phosphorylation was markedly suppressed in the Ref-1-overexpressed A549 cells. Taken together, our results appear to indicate that Ref-1 negatively regulates COX-2 expression in response to cytokine stimulation via the inhibition of p38 MAPK phosphorylation. In the lung cancer cell lines, Ref-1 may be involved as an important negative regulator of inflammatory gene expression.

Glutamine Inhibits TNF-α-induced Cytosolic Phospholipase A2 Activation via Upregulation of MAPK Phosphatase-1

  • Yoon, So Young;Jeong, Soo-Yeon;Im, Suhn-Young
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.223-230
    • /
    • 2021
  • Tumor necrosis factor alpha (TNF-α) is a principal regulator of inflammation and immunity. The proinflammatory properties of TNF-α can be attributed to its ability to activate the enzyme cytosolic phospholipase A2 (cPLA2), which generates potent inflammatory lipid mediators, eicosanoids. L-glutamine (Gln) plays physiologically important roles in various metabolic processes. We have reported that Gln has a potent anti-inflammatory activity via rapid upregulation of mitogen-activated protein kinases (MAPKs) phosphatase (MKP)-1, which preferentially dephosphorylates the key proinflammatory enzymes, p38 MAPK and cytosolic phospholipase A2 (cPLA2). In this study, we have investigated whether Gln could inhibit TNF-α-induced cPLA2 activation. Gln inhibited TNF-α-induced increases in cPLA2 phosphorylation in the lungs and blood levels of the cPLA2 metabolites, leukotrine B4 (LTB4) (lipoxygenase metabolite) and prostaglandin E2 (PGE2) (cyclooxygenase metabolite). TNF-α increased p38 and cPLA2 phosphorylation and blood levels of LTB4 and PGE2, which were blocked by the p38 inhibitor SB202190. Gln inhibited TNF-α-induced p38 and cPLA2 phosphorylation and production of the cPLA2 metabolites. Such inhibitory activity of Gln was no longer observed in MKP-1 small interfering RNA-pretreated animals. Our data indicate that Gln inhibited TNF-α-induced cPLA2 phosphorylation through MKP-1 induction/p38 inhibition, and suggest that the utility of Gln in inflammatory diseases in which TNF-α plays a major role in their pathogenesis.

Inhibitory Effect of WK-38 on TNF-$\alpha$ Induced Vascular Inflammation in Human Umbilical Vein Endothelial Cells (혈관내피세포에서 TNF-$\alpha$ 자극에 의해 유도되는 혈관염증에 대한 WK-38의 억제 효과)

  • Hwang, Sun-Mi;Lee, Yun-Jung;Kim, Eun-Ju;Yoon, Jung-Joo;Lee, Hyeok;Kang, Dae-Gill;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.1132-1138
    • /
    • 2009
  • Vascular inflammation is an important event in the development of vascular diseases such as tumor progression and atherosclerosis. This study was to investigate the inhibitory effects of WK-38, a new herbal prescription for the treatment of atherosclerosis, on vascular inflammation in human umbilical vein endothelial cells (HUVEC). WK-38 is composed of Rhei Rhizoma, Magonoliae Cortex, Moutan Cortez Radicis. Pretreatment with WK-38 was significantly blocked TNF-$\alpha$-induced expression level of cell adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), and endothelial cell selectin (E-selectin) in a dose-dependent manner. TNF-$\alpha$-induced cell adhesion in co-cultured U937 and HUVEC was also blocked by pretreatment with WK-38. Moreover, WK-38 significantly suppressed p65 NF-${\kappa}B$ translocation into the nucleus by TNF-$\alpha$ as well as the phosphorylation and degradation of $I{\kappa}B-{\alpha}$. In conclusion, the present data suggested that WK-38 could suppress TNF-$\alpha$-induced vascular inflammatory process, though inhibition of NF-${\kappa}B$ activation in HUVEC.

The protective effect of Prunella vulgaris ethanol extract against vascular inflammation in TNF-α-stimulated human aortic smooth muscle cells

  • Park, Sun Haeng;Koo, Hyun Jung;Sung, Yoon Young;Kim, Ho Kyoung
    • BMB Reports
    • /
    • v.46 no.7
    • /
    • pp.352-357
    • /
    • 2013
  • Atherosclerosis, which manifests as acute coronary syndrome, stroke, and peripheral arterial diseases, is a chronic inflammatory disease of the arterial wall. Prunella vulgaris, a perennial herb with a worldwide distribution, has been used as a traditional medicine in inflammatory disease. Here, we investigated the effects of P. vulgaris ethanol extract on TNF-${\alpha}$-induced inflammatory responses in human aortic smooth muscle cells (HASMCs). We found that P. vulgaris ethanol extract inhibited adhesion of monocyte/macrophage-like THP-1 cells to activated HASMCs. It also decreased expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin and ROS, No production in TNF-${\alpha}$-induced HASMCs and reduced NF-${\kappa}B$ activation. Furthermore, P. vulgaris extract suppressed TNF-${\alpha}$-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK). These results demonstrate that P. vulgaris possesses anti-inflammatory properties and can regulate TNF-${\alpha}$-induced expression of adhesion molecules by inhibiting the p38 MAPK/ERK signaling pathway.

p38 Mitogen-Activated Protein Kinase and Extracellular Signal-Regulated Kinase Regulate Nitric Oxide Production and Inflammatory Cytokine Expression in Raw Cells

  • Choi, Cheol-Hee;Kim, Sang-Hyun
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.30-35
    • /
    • 2005
  • Background: p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling are thought to have critical role in lipopolysaccharide (LPS)-induced immune response but the molecular mechanism underlying the induction of these signaling are not clear. Methods: Specific inhibitors for p38, SB203580, and for ERK, PD98059 were used. Cells were stimulated by LPS with or without specific MAPK inhibitors. Results: LPS activated inducible nitric oxide synthase (iNOS), subsequent NO productions, and pro-inflammatory cytokine gene expressions (TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and IL-12). Treatment of both SB203580 and PD98059 decreased LPS-induced NO productions. Concomitant decreases in the expression of iNOS mRNA and protein were detected. SB203580 and PD98059 decreased LPS-induced gene expression of IL-$1{\beta}$ and IL-6. SB203580 increased LPS-induced expression of TNF-${\alpha}$ and IL-12, and reactive oxygen species production, but PD98059 had no effect. Conclusion: These results indicate that both p38 and ERK pathways are involved in LPS-stimulated NO synthesis, and expression of IL-$1{\beta}$ and IL-6. p38 signaling pathways are involved in LPS-induced TNF-${\alpha}$ and IL-12, and reactive oxygen species plays an important role in these signaling in macrophage.