• Title/Summary/Keyword: p16 methylation

Search Result 63, Processing Time 0.033 seconds

Association between RASSF1A Promoter Hypermethylation and Oncogenic HPV Infection Status in Invasive Cervical Cancer: a Meta-analysis

  • Li, Jin-Yun;Huang, Tao;Zhang, Cheng;Jiang, Dan-Jie;Hong, Qing-Xiao;Ji, Hui-Hui;Ye, Meng;Duan, Shi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5749-5754
    • /
    • 2015
  • Cervical carcinoma is the main cause of cancer-related mortality in women and is correlated with more than 15 risk cofactors, including infection of cervical cells with high-risk types of HPV (hrHPV). Indeed, both aberrant methylation of the RASSF1A promoter and hrHPV infection are often observed in cervical carcinomas. The purpose of our meta-analysis was to evaluate the role of RASSF1A promoter methylation and hrHPV infection in cervical cancer. Our meta-analysis involved 895 cervical cancer patients and 454 control patients from 15 studies. Our results suggested that RASSF1A promoter hypermethylation increased the risk of cervical cancer (OR=9.77, 95%CI=[3.06, 31.26], P=0.0001, $I^2=78%$). By grouping cases according to cancer subtypes, we found that HPV infection was higher in cervical squamous cell carcinomas (SCCs) than in cervical adenocarcinomas/adenosquamous cancers (ACs/ASCs) (OR=4.00, 95%CI=[1.41, 11.30], P=0.009, $I^2=55%$). Interestingly, HPV infection tended to occur in cervical cancers with relatively low levels of RASSF1A promoter methylation (OR=0.59, 95%CI=[0.36, 0.99], P=0.05, I2=0%). Our study provides evidence of a possible interaction between HPV infection and RASSF1A promoter methylation in the development of cervical cancers.

Association Between p16, hMLH1 and E-cadherin Promoter Hypermethylation and Intake of Local Hot Salted Tea and Sun-dried Foods in Kashmiris with Gastric Tumors

  • Mir, Manzoor R.;Shabir, Nadeem;Wani, Khursheed A.;Shaffi, Sheikh;Hussain, Ishraq;Banday, Manzoor A.;Chikan, Naveed A.;Bilal, S.;Aejaz, Sheikh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.181-186
    • /
    • 2012
  • The aim of this study was to evaluate the methylation status of three important cancer related genes viz. p16, E-cadherin and hMLH1 promoters and to associate the findings with specific dietary habits in Kashmiris, a culturally distinct population in India, with gastric cancer. The study subjects were divided into three age groups viz. 0-30yrs ($1^{st}$), 31-60yrs ($2^{nd}$) and 61-90yrs ($3^{rd}$). A highly significant association between the intake of local hot salted tea in $2^{nd}$ (p=0.001) and $3^{rd}$ (p=0.009) age groups was observed with the promoter hypermethylation of E cadherin. Again a highly significant association between the aberrant methylation of hMLH1 (p=0.000) and p16 (p=0.000) promoters and the intake of local hot salted tea was observed in the $2^{nd}$ age group of gastric cancer patients. The intake of sun-dried food was also significantly associated with the promoter hypermethylation of E cadherin (p=0.003) and p16 (p=0.015) genes in $3^{rd}$ age group. The results of the present study suggest a close association between the aberrant methylation of p16, E-cadherin and hMLH1 promoters and the intake of local hot salted tea and sun-dried foods in Kashmiri population.

Disease Progression from Chronic Hepatitis C to Cirrhosis and Hepatocellular Carcinoma is Associated with Increasing DNA Promoter Methylation

  • Zekri, Abd El-Rahman Nabawy;Nassar, Auhood Abdel-Monem;El-Rouby, Mahmoud Nour El-Din;Shousha, Hend Ibrahim;Barakat, Ahmed Barakat;El-Desouky, Eman Desouky;Zayed, Naglaa Ali;Ahmed, Ola Sayed;Youssef, Amira Salah El-Din;Kaseb, Ahmed Omar;El-Aziz, Ashraf Omar Abd;Bahnassy, Abeer Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6721-6726
    • /
    • 2013
  • Background: Changes in DNA methylation patterns are believed to be early events in hepatocarcinogenesis. A better understanding of methylation states and how they correlate with disease progression will aid in finding potential strategies for early detection of HCC. The aim of our study was to analyze the methylation frequency of tumor suppressor genes, P14, P15, and P73, and a mismatch repair gene (O6MGMT) in HCV related chronic liver disease and HCC to identify candidate epigenetic biomarkers for HCC prediction. Materials and Methods: 516 Egyptian patients with HCV-related liver disease were recruited from Kasr Alaini multidisciplinary HCC clinic from April 2010 to January 2012. Subjects were divided into 4 different clinically defined groups - HCC group (n=208), liver cirrhosis group (n=108), chronic hepatitis C group (n=100), and control group (n=100) - to analyze the methylation status of the target genes in patient plasma using EpiTect Methyl qPCR Array technology. Methylation was considered to be hypermethylated if >10% and/or intermediately methylated if >60%. Results: In our series, a significant difference in the hypermethylation status of all studied genes was noted within the different stages of chronic liver disease and ultimately HCC. Hypermethylation of the P14 gene was detected in 100/208 (48.1%), 52/108 (48.1%), 16/100 (16%) and 8/100 (8%) among HCC, liver cirrhosis, chronic hepatitis and control groups, respectively, with a statistically significant difference between the studied groups (p-value 0.008). We also detected P15 hypermethylation in 92/208 (44.2%), 36/108 (33.3%), 20/100 (20%) and 4/100 (4%), respectively (p-value 0.006). In addition, hypermethylation of P73 was detected in 136/208 (65.4%), 72/108 (66.7%), 32/100 (32%) and 4/100 (4%) (p-value <0.001). Also, we detected O6MGMT hypermethylation in 84/208 (40.4%), 60/108 (55.3%), 20/100 (20%) and 4/100 (4%), respectively (p value <0.001. Conclusions: The epigenetic changes observed in this study indicate that HCC tumors exhibit specific DNA methylation signatures with potential clinical applications in diagnosis and prognosis. In addition, methylation frequency could be used to monitor whether a patient with chronic hepatitis C is likely to progress to liver cirrhosis or even HCC. We can conclude that methylation processes are not just early events in hepatocarcinogenesis but accumulate with progression to cancer.

The first review study on association of DNA methylation with gastric cancer in Iranian population

  • Shahbazi, Mahsa;Yari, Kheirollah;Rezania, Niloufar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2499-2506
    • /
    • 2016
  • Background: Gastric cancer (GC) is the second leading cause of cancer-related death worldwide. Several environmental, genetic and epigenetic factors have been suggested to have a role in GC development. Epigenetic mechanisms like histone changes and promoter hyper-methylation are now being increasingly studied. Associations between methylation of many gene promoters with the risk of gastric cancer have been investigated worldwide. Such aberrant methylation may result in silencing of specific genes related to cell cycling, cell adhesion, apoptosis and DNA repair. Thus this molecular mechanism might have a key role in proliferation and migration of cancerous cells. Materials and Methods: In this review article we included studies conducted on DNA methylation and gastric cancer in Iranian populations. Using Science direct, Pubmed/PMC, Springer, Wiley online library and SciELO databases, all published data until 31 January 2016 were gathered. We also searched Science direct data base for similar investigations around the world to make a comparison between Iran and other countries. Results: By searching these databases, we found that the association between methylation of seven gene promoters and gastric cancer had been studied in Iran until 31 January 2016. These genes were p16, hLMH1, E-cadherin, CTLA4, $THR{\beta}$, mir9 and APC. Searching in science direct database also showed that 92 articles had been published around the world till January 2016. Our investigation revealed that despite the importance of GC and its high prevalence in Iran, the methylation status of only a few gene promoters has been studied so far. More studies with higher sample numbers are needed to reveal the relation of methylation status of gene promoters to gastric cancer in Iran. Conclusions: Further studies will be helpful in identifying associations of DNA methylation in candidate genes with gastric cancer risk in Iranian populations.

Loss of Expression and Aberrant Methylation of the CDH1 (E-cadherin) Gene in Breast Cancer Patients from Kashmir

  • Asiaf, Asia;Ahmad, Shiekh Tanveer;Aziz, Sheikh Aejaz;Malik, Ajaz Ahmad;Rasool, Zubaida;Masood, Akbar;Zargar, Mohammad Afzal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6397-6403
    • /
    • 2014
  • Background: Aberrant promoter hypermethylation has been recognized in human breast carcinogenesis as a frequent molecular alteration associated with the loss of expression of a number of key regulatory genes and may serve as a biomarker. The E-cadherin gene (CDH1), mapping at chromosome 16q22, is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections. The aim of our study was to assess the methylation pattern of CDH1 and to correlate it with the expression of E-cadherin, clinicopathological parameters and hormone receptor status in breast cancer patients of Kashmir. Materials and Methods: Methylation specific PCR (MSP) was used to determine the methylation status of CDH1 in 128 invasive ductal carcinomas (IDCs) paired with the corresponding normal tissue samples. Immunohistochemistry was used to study the expression of E-cadherin, ER and PR. Results: CDH1 hypermethylation was detected in 57.8% of cases and 14.8% of normal adjacent controls. Reduced levels of E-cadherin protein were observed in 71.9% of our samples. Loss of E-cadherin expression was significantly associated with the CDH1 promoter region methylation (p<0.05, OR=3.48, CI: 1.55-7.79). Hypermethylation of CDH1 was significantly associated with age at diagnosis (p=0.030), tumor size (p=0.008), tumor grade (p=0.024) and rate of node positivity or metastasis (p=0.043). Conclusions: Our preliminary findings suggest that abnormal CDH1 methylation occurs in high frequencies in infiltrating breast cancers associated with a decrease in E-cadherin expression. We found significant differences in tumor-related CDH1 gene methylation patterns relevant to tumor grade, tumor size, nodal involvement and age at diagnosis of breast tumors, which could be extended in future to provide diagnostic and prognostic information.

Association of RASSF1A Promoter Methylation with Lung Cancer Risk: a Meta-analysis

  • Huang, Ying-Ze;Wu, Wei;Wu, Kun;Xu, Xiao-Ning;Tang, Wen-Ru
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10325-10328
    • /
    • 2015
  • RASSF1A, regarded as a candidate tumor suppressor, is frequently silenced and inactivated by methylation of its promoter region in many human tumors. However, the association between RASSF1A promoter methylation and lung cancer risk remains unclear. To provide a more reliable estimate we conducted a meta-analysis of cohort studies to evaluate the potential role of RASSF1A promoter methylation in lung carcinogenesis. Relevant studies were identified by searches of PubMed, Web of Science, ProQest and Medline databases using the following key words: 'lung cancer or lung neoplasm or lung carcinoma', 'RASSF1A methylation' or 'RASSF1A hypermethylation'. According to the selection standard, 15 articles were identified and analysised by STATA 12.0 software. Combined odds ratio (OR) and 95% confidence interval (CI) were used to assess the strength of the association between RASSF1A promoter methylation and lung cancer risk. A chi-square-based Q test and sensitivity analyses were performed to test between-study heterogeneity and the contributions of single studies to the final results, respectively. Funnel plots were carried out to evaluate publication bias. Overall, a significant relationship between RASSF1A promoter methylation and lung cancer risk (OR, 16.12; 95%CI, 11.40-22.81; p<0.001) with no between-study heterogeneity. In subgroup analyses, increased risk of RASSF1A methylation in cases than controls was found for the NSCLC group (OR, 13.66, 95%CI, 9.529-19.57) and in the SCLC group (OR, 314.85, 95%CI, 48.93-2026.2).

Characterization and functional inferences of a genome-wide DNA methylation profile in the loin (longissimus dorsi) muscle of swine

  • Kim, Woonsu;Park, Hyesun;Seo, Kang-Seok;Seo, Seongwon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.3-12
    • /
    • 2018
  • Objective: DNA methylation plays a major role in regulating the expression of genes related to traits of economic interest (e.g., weight gain) in livestock animals. This study characterized and investigated the functional inferences of genome-wide DNA methylome in the loin (longissimus dorsi) muscle (LDM) of swine. Methods: A total of 8.99 Gb methylated DNA immunoprecipitation sequence data were obtained from LDM samples of eight Duroc pigs (four pairs of littermates). The reference pig genome was annotated with 78.5% of the raw reads. A total of 33,506 putative methylated regions (PMR) were identified from methylated regions that overlapped at least two samples. Results: Of these, only 3.1% were commonly observed in all eight samples. DNA methylation patterns between two littermates were as diverse as between unrelated individuals (p = 0.47), indicating that maternal genetic effects have little influence on the variation in DNA methylation of porcine LDM. The highest density of PMR was observed on chromosome 10. A major proportion (47.7%) of PMR was present in the repeat regions, followed by introns (21.5%). The highest conservation of PMR was found in CpG islands (12.1%). These results show an important role for DNA methylation in species- and tissue-specific regulation of gene expression. PMR were also significantly related to muscular cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism. Conclusion: This study indicated the biased distribution and functional role of DNA methylation in gene expression of porcine LDM. DNA methylation was related to cell development, cell-cell communication, cellular integrity and transport, and nutrient metabolism (e.g., insulin signaling pathways). Nutritional and environmental management may have a significant impact on the variation in DNA methylation of porcine LDM.

Facile Synthesis of 2-(p-Methylallylaminophenyl)propionic Acid (Alminoprofen) (2-(p-메틸알릴아미노페닐)프로판산의 합성)

  • Choi, Hong-Dae;Yun, Ho-Sang;Kang, Byung-Won;Ma, Jung-Joo;Son, Byeng-Wha
    • YAKHAK HOEJI
    • /
    • v.36 no.1
    • /
    • pp.12-16
    • /
    • 1992
  • A new method for the synthesis of alminoprofen, which is a non-steroidal antiinflammatory agent, was described. Ethyl 2-phenyl-propionate(4) was prepared by Friedel-Crafts reaction of benzene with ethyl ${\alpha}-chloro-{\alpha}(methylthio)acetate(1)$, followed by methylation and desulfurization of the resultant ethyl 2-(methylthio)phenylacetate(2). Ethyl 2-(p-aminophenyl)propionate(6) was obtained by nitration of (4) and successive reduction of ethyl 2-(p-nitrophenyl)propionate(5). Alminoprofen was synthesized by reaction of (6) with methallyl chloride, followed by hydrolysis of the resultant ethyl 2-(p-methylallylaminophenyl)propionate (7).

  • PDF

Hypomethylation of DNA in Nuclear Transfer Embryos from Porcine Embryonic Germ Cells

  • Lee, Bo-Hyung;Ahn, Kwang-Sung;Heo, Soon-Young;Shim, Ho-Sup
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • Epigenetic modification including genome-wide DNA demethylation is essential for normal embryonic development. Insufficient demethylation of somatic cell genome may cause various anomalies and prenatal loss in the development of nuclear transfer embryos. Hence, the source of nuclear donor often affects later development of nuclear transfer (NT) embryos. In this study, appropriateness of porcine embryonic germ (EG) cells as karyoplasts for NT with respect to epigenetic modification was investigated. These cells follow methylation status of primordial germ cells from which they originated, so that they may contain less methylated genome than somatic cells. This may be advantageous to the development of NT embryos commonly known to be highly methylated. The rates of blastocyst development were similar among embryos from EG cell nuclear transfer (EGCNT), somatic cell nuclear transfer (SCNT), and intracytoplasmic sperm injection (ICSI) (16/62, 25.8% vs. 56/274, 20.4% vs. 16/74, 21.6%). Genomic DNA samples from EG cells (n=3), fetal fibroblasts (n=4) and blastocysts from EGCNT (n=8), SCNT (n=14) and ICSI (n=6) were isolated and treated with sodium bisulfite. The satellite region (GenBank Z75640) that involves nine selected CpG sites was amplified by PCR, and the rates of DNA methylation in each site were measured by pyrosequencing technique. The average methylation degrees of CpG sites in EG cells, fetal fibroblasts and blastocysts from EGCNT, SCNT and ICSI were 17.9, 37.7, 4.1, 9.8 and 8.9%, respectively. The genome of porcine EG cells were less methylated than that of somatic cells (p<0.05), and DNA demethylation occurred in embryos from both EGCNT (p<0.05) and SCNT (p<0.01). Interestingly, the degree of DNA methylation in EGCNT embryos was approximately one half of SCNT (p<0.01) and ICSI (p<0.05) embryos, while SCNT and ICSI embryos contained demethylated genome with similar degrees. The present study demonstrates that porcine EG cell nuclear transfer resulted in hypomethylation of DNA in cloned embryos yet leading normal preimplantation development. Further studies are needed to investigate whether such modification affects long-term survival of cloned embryos.

Increased Hypermethylation of Glutathione S-Transferase P1, DNA-Binding Protein Inhibitor, Death Associated Protein Kinase and Paired Box Protein-5 Genes in Triple-Negative Breast Cancer Saudi Females

  • Hafez, Mohamed M.;Al-Shabanah, Othman A.;Al-Rejaie, Salim S.;Al-Harbi, Naif O.;Hassan, Zeinab K.;Alsheikh, Abdulmalik;Theyab, Abdurrahman I. Al;Aldelemy, Meshan L.;Sayed-Ahmed, Mohamed M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.541-549
    • /
    • 2015
  • Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) with higher metastatic rate and both local and systemic recurrence compared to non-TNBC. The generation of reactive oxygen species (ROS) secondary to oxidative stress is associated with DNA damage, chromosomal degradation and alterations of both hypermethylation and hypomethylation of DNA. This study concerns differential methylation of promoter regions in specific groups of genes in TNBC and non-TNBC Saudi females in an effort to understand whether epigenetic events might be involved in breast carcinogenesis, and whether they might be used as markers for Saudi BCs. Methylation of glutathione S-transferase P1 (GSTP1), T-cadherin (CDH13), Paired box protein 5 (PAX5), death associated protein kinase (DAPK), twist-related protein (TWIST), DNA-binding protein inhibitor (ID4), High In Normal-1 (HIN-1), cyclin-dependent kinase inhibitor 2A (p16), cyclin D2 and retinoic acid receptor-${\beta}$ ($RAR{\beta}1$) genes was analyzed by methylation specific polymerase chain reaction (MSP) in 200 archival formalin-fixed paraffin embedded BC tissues divided into 3 groups; benign breast tissues (20), TNBC (80) and non-TNBC (100). The relationships between methylation status, and clinical and pathological characteristics of patients and tumors were assessed. Higher frequencies of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 hypermethylation were found in TNBC than in non-TNBC. Hypermethylation of GSTP1, CDH13, ID4, DAPK, HIN-1 and PAX5 increased with tumor grade increasing. Other statistically significant correlations were identified with studied genes. Data from this study suggest that increased hypermethylation of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 genes in TNBC than in non-TNBC can act as useful biomarker for BCs in the Saudi population. The higher frequency of specific hypermethylated genes paralleling tumor grade, size and lymph node involvement suggests contributions to breast cancer initiation and progression.