• Title/Summary/Keyword: p-type ZnO:Al

Search Result 50, Processing Time 0.028 seconds

Growth and Optical Properties for ZnO Thin Film by Pulesd Laser Deposition (펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 광학적 특성)

  • 홍광준;김재열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.233-244
    • /
    • 2004
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_2O_3$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_2O_3$)substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}10^{16}\;cm^{-3}$ and $299\;{\textrm}cm^2/V.s$ at 293K. respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;3.3973\;eV\;-\;(2.69{\times}10^{-4}\;eV/K)T^2/(T+463K)$. After the as-grown ZnO epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO atmospheres has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{zn},\;Vo,\;Zn_{int},\;and\;O_{int}$ obtained by PL measurements were classified as a donors or acceptors type. In addition, we concluded that the heat-treatment in the oxygen atmosphere converted ZnO thin films to an optical p-type. Also, we confirmed that vacuum in $ZnO/Al_2O_3$ did not form the native defects because vacuum in ZnO thin films existed in the form of stable bonds.

  • PDF

Structural and Electrical Transport Properties of Zn Doped CuCrO2 by Pulsed Laser Deposition

  • Kim, Se-Yun;Seong, Sang-Yun;Chu, Man;Jo, Gwang-Min;U, Jin-Gyu;Lee, Jun-Hyeong;Kim, Jeong-Ju;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.256-256
    • /
    • 2010
  • 투명전극부터 디스플레이 산업에 이르기까지 광범위하게 응용되어지고 있고 개발되어지고 있는 투명전도산화물(TCO)은 ZnO, In2O3, SnO2 등을 기본으로 하는 n-type 재료가 대부분이다. 그러나 투명전도 산화물을 이용한 light emitting diode(LED), 투명한 태양전지, p-형 TFT와 같은 투명전자소자의 개발을 위해서는 p-type 소재가 필수적이다. p-type TCO 소재는 비교적 연구 개발 실적이 매우 부진한 실정이었다. 1997년 넓은 밴드갭을 가지는 ABO2(delafossite) 산화물이 p-type으로서 안정적이라는 것을 보고함에 따라 이에 대한 연구가 활발히 진행되고 있다. 현재 ABO2 형태를 가진 Delafossite구조 산화물이 가장 유망한 p-type 투명전도체 소재로 거론되고 있다. Delafossite 구조가 p-type 투명전도체에 적합한 결정구조인 이유는 밴드갭이 넓고 공유결합에 유리하기 때문이다. Delafossite구조는 상온에서 2종류의 polytype(상온에서 Rhombohedaral구조와 hexagonal 구조)이 존재하며 이들은 각각 3R 및 2H의 결정 구조를 가지고 있다. ABO2의 delafossite구조에서 Cu+의 배열은 c-축을 따라 Cu-O-Cr-O-Cu의 연속적인 층 구조로서 2차원연결로 보여 진다. 보고된 Cu- base delafossite구조를 가지는 재료들은 CuAlO2, CuGaO2, CuInO2 등 여러가지가 있다. 본 연구에서는 PLD를 이용하여 c-plane 사파이어 기판위에 성장된 delafossite구조인 CuCrO2박막의 특성을 알아보았다. p-type 특성을 위하여 CuCrO2에 Zn를 첨가하였으며 그에 따른 구조적 전기적 특성을 조사하였다. 성장온도와 산소분압을 $500{\sim}700^{\circ}C$, 0~10mTorr로 변화시켜 특성을 연구하였다. 성장온도 $700^{\circ}C$, 산소분압 10mTorr에서 c-plane 사파이어 기판위에 c-축 배향의 에피성장된 CuCrO2:Zn 박막을 얻을 수 있었다. Mg를 도핑함에 따른 p-type 특성보다 현저히 떨어지는 것을 확인하였다. 또한 동일한 조건임에도 특정한 이차상의 존재를 통해 도핑된 Zn의 위치를 추측할 수 있었다. 온도와 분압에 따른 결정성과 표면상태를 SEM을 통해서 확인하였다.

  • PDF

The Microstructures and Electrical Properties of ZnO/Sapphire Thin Films Doped by P and As based on Ampouele-tube Method (Ampoule-tube 법으로 P와 As을 도핑한 ZnO/Sapphire 박막의 미세구조와 전기적 특성)

  • Yoo, In-Sung;Jin, Eun-Mi;So, Byung-Moon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.120-121
    • /
    • 2006
  • To investigate the ZnO thin films which are interested in the next generation of short wavelength LEDs and Lasers, the ZnO thin films were deposited by RF magnetron sputtering system. Al sputtering process of ZnO thin films substrate temperature, work pressure respectively is $100^{\circ}C$ and 15 mTorr, and the purity of target is ZnO 5N. The ZnO thin films were in-situ annealed at $600^{\circ}C$, $800^{\circ}C$ in $O_2$ atmosphere. Phosphorus (P) and arsenic (As) were diffused into ZnO thin films sputtered by RF magnetron sputtering system in ampoule tube which was below $5{\times}10^{-7}$ Torr. The dopant sources of phosphorus and arsenic were $Zn_3P_2$ and $ZnAS_2$. Those diffusion was perform at $650^{\circ}C$ during 3hr. We confirmed that p-type properties of ZnO thin films were concerned with dopant sources rather than diffusion temperature.

  • PDF

Microstructure and Sintering Behavior of ZnO Thermoelectric Materials Prepared by the Pulse-Current-Sintering Method

  • Shikatani, Noboru;Misawa, Tatsuya;Ohtsu, Yasunori;Fujita, Hiroharu;Kawakami, Yuji;Enjoji, Takashi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.682-683
    • /
    • 2006
  • Thermoelectric conversion efficiency of thermoelectric elements can be increased by using a structure combining n-type and p-type semiconductors. From the above point of view, attention was directed at ZnO as a candidate n-type semiconductor material and investigations were made. As the result, a dimensionless figure of merit ZT close to 0.28 (1073K) was obtained for specimens produced by the PCS (Pulse Current Sintering) method with addition of specified quantities of $TiO_2$, CoO, and $Al_2O_3$ to ZnO. It was found that the interstitial $TiO_2$ in the ZnO restrains the grain growth and CoO acts onto the bond between grains. The influence of the inclusion of $TiO_2$ and CoO onto the sintering behavior also was investigated.

  • PDF

Electrically Stable Transparent Complementary Inverter with Organic-inorganic Nano-hybrid Dielectrics

  • Oh, Min-Suk;Lee, Ki-Moon;Lee, Kwang-H.;Cha, Sung-Hoon;Lee, Byoung-H.;Sung, Myung-M.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.620-621
    • /
    • 2008
  • Transparent electronics has been one of the key terminologies forecasting the ubiquitous technology era. Several researchers have thus extensively developed transparent oxide-based thin-film transistors (TFTs) on glass and plastic substrates although in general high voltage operating devices have been mainly studied considering transparent display drivers. However, low voltage operating oxide TFTs with transparent electrodes are very necessary if we are aiming at logic circuit applications, for which transparent complementary or one-type channel inverters are required. The most effective and low power consuming inverter should be a form of complementary p-channel and n-channel transistors but real application of those complementary TFT inverters also requires electrical- and even photo-stabilities. Since p-type oxide TFTs have not been developed yet, we previously adopted organic pentacene TFTs for the p-channel while ZnO TFTs were chosen for n-channel on sputter-deposited $AlO_x$ film. As a result, decent inverting behavior was achieved but some electrical gate instability was unavoidable at the ZnO/$AlO_x$ channel interface. Here, considering such gate instability issues we have designed a unique transparent complementary TFT (CTFTs) inverter structure with top n-ZnO channel and bottom p-pentacene channel based on 12 nm-thin nano-oxide/self assembled monolayer laminated dielectric, which has a large dielectric strength comparable to that of thin film amorphous $Al_2O_3$. Our transparent CTFT inverter well operate under 3 V, demonstrating a maximum voltage gain of ~20, good electrical and even photoelectric stabilities. The device transmittance was over 60 % and this type of transparent inverter has never been reported, to the best of our limited knowledge.

  • PDF

Application of Pulsed Laser Deposition Method for ZnO Thin Film Growth and Optical Properties (ZnO 박막 성장과 광학적 특성 분석을 위한 펄스 레이저증착(PLD)방법 적용)

  • Hong Kwang Joon;Kim Jae Youl
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.33-41
    • /
    • 2005
  • ZnO epilayer was synthesized by the pulsed laser deposition(PLD) process on Al$_2$O$_3$ subsorte after irradiating the surface of ZnO sintered pellet by ArF(193nm) excimer laser. The epilayers of ZnO were achieved on sapphire(A1203) substrate at the 境mperature of 400$^{circ}$C. The crystalline structure of epilayer was investigated by the Photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of ZnO epilayer measure with Hall effect by van der Pauw mothod are $8.27\times$1016cm$^{-3}$ and 299 cm$^{2}$/V$\cdot$s at 293 K respectively, The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, E$_g$(T)= 3.3973 eV - ($2.69\times$ 10$^{-4}$ eV/K)T$^{2}$/(T + 463K). After the as-grown ZnO epilayer was annealed in Zn atmospheres, oxygen and vaccum the origin of point defects of ZnO atmospheres has been investigated by the photoluminescence(PL) at 10K. The native defects of V$_{Zn}$, V$_{O}$, Zn$_{int}$, and O$_{int}$ obtained by PL measurements were classified as a donor or acceptor type. In addition we concluded that the heat-treatment in the oxygen atmosphere converted ZnO thin films to an optical p-type. Also, we confirmed that vacuum in ZnO/Al$_2$O$_3$ did not firm the native defects because vacuum in ZnO thin films existed in the form of stable bonds.

Changes in Interface Properties of TCO/a-Si:H Layer by Zn Buffer Layer in Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지의 Zn 확산방지층에 의한 TCO/a-Si:H 층간의 계면특성 변화)

  • Tark, Sung-Ju;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.341-346
    • /
    • 2011
  • In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.

Ga-ZnO film using electrochemical method (전기화학적 방법을 이용한 Ga-ZnO film)

  • Sim, Won-Hyeon;Kim, Yeong-Tae;Park, Mi-Yeong;Im, Dong-Chan;Lee, Gyu-Hwan;Jeong, Yong-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.151-151
    • /
    • 2009
  • ZnO 박막은 큰 밴드 갭 및 가시광 영역에서 높은 광투과성을 가지며, 제조조건에 따라 비저항의 범위가 폭넓게 변화하므로 태양전지, 평판 디스플레이의 투명 전극뿐만 아니라 음향공전기, 바리스터 등에 이용되고 있다. ZnO 박막의 전도성을 향상시키기 위해서 일반적으로 Al, Ga, Ti, In, B, H(n-type), 등과 N, As(p-type)의 도펀트를 사용한다. 본 연구에서는 전기화학적인 방법을 사용하여 ITO/glass위에 ZnO film에 농도에 따른 Ga을 doping 하여 전기전도성 향상과 밴드갭을 넓힘으로서 전자의 recombination을 방지하여 유기태양전지의 효율을 높이는데 목적을 두었다.

  • PDF

Process and Performance Analysis of a-Si:H/c-Si Hetero-junction Solar Sells Prepared by Low Temperature Processes (저온 공정에 의한 a-Si:H/c-Si 이종접합 태양전지 제조 및 동작특성 분석)

  • Lim, Chung-Hyun;Lee, Jeong-Chul;Jeon, Sang-Won;Kim, Sang-Kyun;Kim, Seok-Ki;Kim, Dong-Seop;Yang-Sumi;Kang-Hee-Bok;Lee, Bo-young;Song-Jinsoo;Yoon-Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.196-200
    • /
    • 2005
  • In this work, we investigated simple Aㅣ/TCO/a-Si:H(n)/c-Si(p)/Al hetero-junction solar cells prepared by low temperature processes, unlike conventional thermal diffused c-Si solar cells. a-Si:H/c-Si hetero-junction solar cells are processed by low temperature deposition of n-type hydrogenated amorphous silicon (a-Si:H) films by plasma-enhanced chemical vapor deposition on textured and flat p-type silicon substrate. A detailed investigation was carried out to acquire optimization and compatibility of amorphous layer, TCO (ZnO:Al) layer depositions by changing the plasma process parameters. As front TCO and back contact, ZnO:Al and AI were deposited by rf magnetron sputtering and e-beam evaporation, respectively. The photovoltaic conversion efficiency under AMI.5 and the quantum efficiency on $1cm^2$ sample have been reported. An efficiency of $12.5\%$ is achieved on hetero-structure solar cells based on p-type crystalline silicon.

  • PDF

Photocatalytic Degradation of Methyl tert-Butyl Ether (MTBE): A review

  • Seddigi, Zaki S.;Ahmed, Saleh A.;Ansari, Shahid P.;Yarkandi, Naeema H.;Danish, Ekram;Oteef, Mohammed D.Y.;Cohelan, M.;Ahmed, Shakeel;Abulkibash, Abdallah M.
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.11-28
    • /
    • 2014
  • Advanced oxidation processes using UV and catalysts like $TiO_2$ and ZnO have been recently applied for the photocatalytic degradation of MTBE in water. Attempts have been made to replace the UV radiation by the solar spectrum. This review intends to shed more light on the work that has been done so far in this area of research. The information provided will help in crystallizing the ideas required to shift the trend from UV photocatalysis to sunlight photocatalysis. The careful optimization of the reaction parameters and the type of the dopant employed are greatly responsible for any enhancement in the degradation process. The advantage of shifting from UV photocatalysts to visible light photocatalysts can be observed when catalysts like $TiO_2$ and ZnO are doped with suitable metals. Therefore, it is expected that in the near future, the visible light photocatalysis will be the main technique applied for the remediation of water contaminated with MTBE.