• Title/Summary/Keyword: p-q theory

Search Result 144, Processing Time 0.027 seconds

Studies on the Fishery Biology of Pomfrets, Pampus spp. in the Korean Waters 6. Stock Assessment of Korean pomfret, Pampus echinogaster (한국근해 병어류의 자원생물학적 연구 6. 덕대의 자원해석과 관리)

  • KIM Yong Mun;KANG Yong Joo;PARK Byung Ha;LEE Dong Woo;LEE Joo Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.5
    • /
    • pp.306-316
    • /
    • 1989
  • We examined the state of Korean pomfret(Pampus echinogaster) in Korean waters and considered the management strategy of the stock based on the theory yield Per recruit. It is not facile to discriminate Korean pomfret distributed in Korean waters from silver pomfret (p. argenteus) due to the similarities in their external morphologies. For this rea- son, Korean pomfret has been treated in silver pomfret in fisheries statistics of Korea. In this study, we asserted Korean pomfret from pomfrets caught commercially by the morphology, from which we recognized that Korean pomfret took $60\~70\%$ in catch(in weight) and that the smaller the body length, the higher the proportion of Korean pomfret. Parameters estimated for Korean pomfret were as follows: natural mortality(M) = 0.6, fishing mortality(F) =0.924(mean value for $1986\~1988$), age at recruit to fishery($t_r$) =0.19 yrs, age at first capture($t_c$) : 0.49 yrs, and the rate of recruit of age-0 fish to fishery(Q) = 0.29. The results obtained from the theory of yield per recruit indicated that the present state of stock was below the optimum level of exploitation and that the control of fishing intensity rarely had an effect on the increasing of yield. Accordingly, we conclude that proper management can be made by increasing the current age of 0.49 yrs at first capture to 1.5 yrs.

  • PDF

Velocity-effective stress response of $CO_2$-saturated sandstones ($CO_2$로 포화된 사암의 속도-유효응력 반응)

  • Siggins, Anthony F.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Three differing sandstones, two synthetic and one field sample, have been tested ultrasonically under a range of confining pressures and pore pressures representative of in-situ reservoir pressures. These sandstones include: a synthetic sandstone with calcite intergranular cement produced using the CSIRO Calcite In-situ Precipitation Process (CIPS); a synthetic sandstone with silica intergranular cement; and a core sample from the Otway Basin Waarre Formation, Boggy Creek 1 well, from the target lithology for a trial $CO_2$ pilot project. Initial testing was carried on the cores at "room-dried" conditions, with confining pressures up to 65 MPa in steps of 5 MPa. All cores were then flooded with $CO_2$, initially in the gas phase at 6 MPa, $22^{\circ}C$, then with liquid-phase $CO_2$ at a temperature of $22^{\circ}C$ and pressures from 7 MPa to 17 MPa in steps of 5 MPa. Confining pressures varied from 10 MPa to 65 MPa. Ultrasonic waveforms for both P- and S-waves were recorded at each effective pressure increment. Velocity versus effective pressure responses were calculated from the experimental data for both P- and S-waves. Attenuations $(1/Q_p)$ were calculated from the waveform data using spectral ratio methods. Theoretical calculations of velocity as a function of effective pressure for each sandstone were made using the $CO_2$ pressure-density and $CO_2$ bulk modulus-pressure phase diagrams and Gassmann effective medium theory. Flooding the cores with gaseous phase $CO_2$ produced negligible change in velocity-effective stress relationships compared to the dry state (air saturated). Flooding with liquid-phase $CO_2$ at various pore pressures lowered velocities by approximately 8% on average compared to the air-saturated state. Attenuations increased with liquid-phase $CO_2$ flooding compared to the air-saturated case. Experimental data agreed with the Gassmann calculations at high effective pressures. The "critical" effective pressure, at which agreement with theory occurred, varied with sandstone type. Discrepancies are thought to be due to differing micro-crack populations in the microstructure of each sandstone type. The agreement with theory at high effective pressures is significant and gives some confidence in predicting seismic behaviour under field conditions when $CO_2$ is injected.

An Application-Specific and Adaptive Power Management Technique for Portable Systems (휴대장치를 위한 응용프로그램 특성에 따른 적응형 전력관리 기법)

  • Egger, Bernhard;Lee, Jae-Jin;Shin, Heon-Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.8
    • /
    • pp.367-376
    • /
    • 2007
  • In this paper, we introduce an application-specific and adaptive power management technique for portable systems that support dynamic voltage scaling (DVS). We exploit both the idle time of multitasking systems running soft real-time tasks as well as memory- or CPU-bound code regions. Detailed power and execution time profiles guide an adaptive power manager (APM) that is linked to the operating system. A post-pass optimizer marks candidate regions for DVS by inserting calls to the APM. At runtime, the APM monitors the CPU's performance counters to dynamically determine the affinity of the each marked region. for each region, the APM computes the optimal voltage and frequency setting in terms of energy consumption and switches the CPU to that setting during the execution of the region. Idle time is exploited by monitoring system idle time and switching to the energy-wise most economical setting without prolonging execution. We show that our method is most effective for periodic workloads such as video or audio decoding. We have implemented our method in a multitasking operating system (Microsoft Windows CE) running on an Intel XScale-processor. We achieved up to 9% of total system power savings over the standard power management policy that puts the CPU in a low Power mode during idle periods.

Variation of Undrained Shear Behavior with Consolidation Stress Ratio of Nakdong River Sand (압밀응력비에 따른 낙동강모래의 비배수전단거통 특성)

  • 김영수;정성관;송준혁;정동길
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.83-93
    • /
    • 2003
  • This research, in order to study the effects of initial shear stress of anisotropically consolidated sand that has 0.558% fines, performed several undrained static and dynamic triaxial test. To simulate the real field conditions, loose and dense samples were prepared. Besides, the cyclic shear strength of Nakdong River sand under various combinations of initial static shear stress, stress path, pore water pressure and residual strength relationship was studied. By using Bolton's theory, peak internal friction angle at failure which has considerable effects on the relative density and mean effective stress was determined. In p'- q diagram, the phase transformation line moves closer to the failure line as the specimen's initial anistropical consolidation stress increases. Loose sands were more affected than dense sands. The increase of consolidation stress ratio from 1.4 to 1.8 had an effect on liquefaction resistance strength resulting from the increase of relativity density, and showed similar CSR values in dense specimen condition.