(An Application-Specific and Adaptive Power Management
Technique for Portable Systems)

oz g’ of xf & ™ Alg A"

(Bernhard Egger) (Jaejin Lee) (Heonshik Shin)

2 2 E =% dynamic voltage scaling (DVS)E A dste FUAXE o s 3t &z 2
a9 5480 we 49 Fol A¥AY 7Ye] tEA F4¥e ¥ Adel Y st A4
£ =79 AP 7y degHad A2 HdHE soft real-time ZEIWE memory
subsystem ¥ ZT2AMAS] A AZHrun time) B FF MZidle time)E Tt ZEIY AY Fof
HA9 DVS/E A48 5 UTF o AFH G I ARAQ Y L AN 22y FHE o
43 4 U=F adaptive power manager(APM)E 7)'i3sto] A Aol ASAAT, Post-pass 23}
7l APME 9% 83 APIE =209 dgoln|Ae 495t Ha F DVSyh A45HE =99
£ EASTE APME 2213 A8 £ cache miss 5 < &3 CPUY performance counters
S #AF) Performance counterS9] & ¥ ® CPUS memory 48 2= J98 FEES =
ZAMY 7 A 7 £4e $3stn, BAE Zogodsd g% A4 Ags B 298 43
3ted Alz=go] wrdgt} AgslE 7PHe ZAFE Bl Y8t Intel®] XScale TEAMA AoA F26t
© Windows CEd & 7|HE& FH3AL, 3PS Fdto £ =FoM AN 71Hel Gt &4
olElE dFdhe TERaUD Po] Hr|How vk AL FYse RGN aRAAE & S U
o AY At B o {FARD ZeAME AFEreg wRe 712 nAF AY e Y
Bt} AA) A2y A8 4A2E 9% © "X 5 ok

7199= : dynamic voltage scaling, %3]

Abstract In this paper, we introduce an application-specific and adaptive power management
technique for portable systems that support dynamic voltage scaling (DVS). We exploit both the idle
time of multitasking systems running soft real-time tasks as well as memory~ or CPU-bound code
regions. Detailed power and execution time profiles guide an adaptive power manager (APM) that is
linked to the operating system. A post-pass optimizer marks candidate regions for DVS by inserting
calls to the APM. At runtime, the APM monitors the CPU’s performance counters to dynamically
determine the affinity of the each marked region. For each region, the APM computes the optimal
voltage and frequency setting in terms of energy consumption and switches the CPU to that setting
during the execution of the region. Idle time is exploited by monitoring system idle time and switching
to the energy-wise most economical setting without prolonging execution. We show that our method
is most effective for periodic workloads such as video or audio decoding. We have implemented our
method in a multitasking operating system (Microsoft Windows CE) runming on an Intel
XScale-processor. We achieved up to 9% of total system power savings over the standard power
management policy that puts the CPU in a low power mode during idle periods.

Key words : dynamic voltage scaling, portable systems

367

- This work was supported in part by the Ministry of Education under the T gAY Nedgn AFHTER

Brain Korea 21 Project, by the MIC/IITA/ETRI SoC Industry Promotion bernhard @aces.snu.ac.kr
Center, Human Resource Development Project for IT SoC Architect, by ++ F459 : Aeigdz AFe T o
the IT R&D program of MIC/IITA (2006-5-040-01, Development of Flash jlee@aces.snu.ac.kr
Memory-based Embedded Multimedia Software), and by the Microsoft shinhs@snu.ac.kr
Research Innovation Excellence Award for Embedded Systems. ITC at w=ERs 0 2007d 39 19¢

Seoul National University provided research facilities for this study. Axgg 20013 € 219

368 BRI =R Alag] R o8 A M A 8 ZQ78)

1. Introduction

As battery-operated portable devices hecome ubi-
quitous, satisfying demands for effective energy
reduction techniques is ever more important. The
device should use as little energy as possible while
still providing satisfactory performance; in other
words, the quality of service (QoS) requirement
must be met.

Dynamic voltage (and frequency) scaling (DVS)
is an effective method to reduce the power consum-
ption of the CPU [4]. DVS is supported by a num-
ber of processors on the market such as AMD’s
Mobile Athlon [2], Intel's XScale [15], and Trans-
meta’'s Crusoe [11]. Power dissipation of CMOS
circuits is composed of static and dynamic power.
Static power is caused by leakage in transistors. In
this work, leakage is assumed to be constant. Dyna-
mic power is directly proportional to the square of
the input voltage

PxCV, - f

where C is the switched capacitance, Vas is the
supply voltage, and f is the clock frequency. DVS
enables one to reduce the supply voltage at runtime
to reduce power/energy consumption. However,
lowering the supply voltage increases the device
delay and must therefore be accompanied by a
reduction in clock frequency, ie. the voltage and
the frequency must be lowered together [16].

The goal of the vast majority of research on
DVS is to conserve energy without the user noti-
cing a performance degradation. There are basically
two ways to achieve that: the first one is detecting
and exploiting slack and idle time, the other one is
applying DVS in memory-bound and CPU-bound
code regions.

In real-time operating systems, slack time is
defined as the time a periodic task finishes before
its periodic deadline. Idle time, on the other hand,
is the time that is left in a certain period of time
after all threads have been scheduled. Idle time can
occur both in real-time and non real-time systems.
Exploiting slack and/or idle time is common for
real-time systems where task deadlines are known
in advance. By modifying the task scheduler and

analyzing the (remaining) worst case execution

time (WCET) of periodic real-time tasks, the CPU
is switched to a lower frequency to make use of
slack and/or idle time, which saves a considerable
amount of power [1,3,19,2324]. In non real-time
multitasking operating systems, there is no slack
time. The idle time varies with the system load
and is not known in advance. There are several
approaches to estimate the future idle time. Weiser's
original algorithm, called PAST [26], predicts idle
time based on the idle time observed in the past.
More sophisticated and accurate prediction algorithms
have been developed in [21,25].

The second way to save energy without severely
degrading performance is to apply DVS in memory-
bound and CPU-bound code regions. If the target
architecture supports asynchronous memory accesses,
the CPU often stalls during the execution of mem-
ory-bound code regions due to frequent cache mis-
ses. For such regions, reducing the CPU frequency
does not affect performance significantly because
the execution time is dominated by the memory
access latency. This approach can be found in
[12,22,27].

This paper introduces an application-specific and
adaptive power management technique for portable
systems. Our goal is to design an adaptive execu-
tion algorithm that reduces the total system energy
using DVS without modifying the scheduler. An ada-
ptive power manager (APM) is linked to the operat-
ing system, and user programs call the power
manager through its APL Our work integrates both
of the two methods mentioned above. It detects
memory-bound code regions at run time and slows
down the CPU in these regions whenever these
regions are entered again. Moreover, it monitors the
idle time to detect periodic behavior and then pro-
longs the execution time of these periodic regions
by reducing the CPU clock frequency. Some previ-
ous work [6,13] specifically targets MPEG decoding
and evaluates the system energy state at the frame
level (ie., the power APIs are called whenever
decoding of a new video frame begins). However,
these program points are difficult to detect at
compile time without deep knowledge of the appli-
cation. Our technique, in contrast, uses a post-pass

optimizer to find likely candidates for energy sav-

FUHFAE Y Sz

ings and can detect periodic behavior even if the
APM API calls do not occur at specific program
points.

The rest of this paper is organized as follows.
Section 2 discusses related work. Section 3 explains
our adaptive power management scheme in detail.
Section 4 presents the energy models. Section 5
describes the evaluation environment and the bench-
marks used, and Section 6 presents the results.
The paper concludes with Section 7.

2. Related Work

DVS scheduling policies have been exhaustively
studied at the

compiler level.

hardware, operating system and
[26] proposed an
interval-based algorithm called PAST that predicts
the workload based on the last couple of epochs.
Ishihara and Yasuura [16] give an ILP formulation
for task-based DVS, but do not take into account
the transition costs. Swaminathan and Chakrabarty

[24] make some approximations to have their ILP

Weiser et al.

model incorporate the transition costs. Aydin et al
(3] reclaim slack time of hard real-time tasks and
redistribute it to the scheduled task. In [25], Varma
et al. present an interesting approach to set the
voltage of the CPU in the scheduler based on a
feedback-loop controller as commonly found in
control systems. Lorch and Smith [19] introduced
PACE, a framework that works in conjunction with
any existing OS-level DVS scheduling policy. They
show that optimal energy savings are achieved by
incrementally increasing the voltage/frequency as a
task approaches its deadline. The work of Xu et al.
[28] proposes an improved version of PACE for
systems with discrete voltage/frequency settings.
At the compiler level, research has targeted the
use of mode-set instructions. Shin et al. [23] insert
mode-set instructions on the edges in the control
flow between basic blocks. A not taken IF branch,
shortens the total WCET and so
presents an opportunity to lower the voltage/speed.
Another possibility is presented by loops that are
not repeated the maximum number of iterations.
23] considers both cases. Hsu and Kremer {12]
the

regions

for example,

suggest lowering voltage/frequency in
that detected by

memory-bound are

B

539

-
pud

=)

3 H

of w2

AE B 7] 369

analyzing profiling information. Saputra et al. {22}
present an ILP formulation for computing the
optimal voltage/frequency mode for each loop nest.
Xie et al. [27]1 extend the ILP to include practical
transition costs.

In [1], Aboughazaleh et al. present a DVS sche-
duling policy that involves both the compiler and
the operating system. At compile-time, the compiler
inserts mode-set instructions or mode-set hints.
The OS is invoked by the latter one and sets the
mode based on actual slack available.

Some rtesearch explicitly targets video codecs
(MPEG). Hughes et al. [13] measure the IPC and
the power consumption for each of three MPEG
frame types and set the optimal mode at the begi-
nning of each frame type. Choi et al. [6] use the
information provided by the performance counters
of the XScale processor to determine the best set-
ting for each frame type. Both require careful ana—
lysis of the source code to insert the instrumentation
code at the correct locations (ie., at the beginning/
end of the code handling the various frame types).
In [7], the same authors propose a similar approach
to our previous work [8]. By monitoring the perfor-
mance counters, a modified scheduler switches to
the energy-optimal frequency for each application
based on an energy model obtained beforehand.
However, their approach does not consider idle time
and requires modifications to the operating system.

This paper extends the DVS scheduling policy
introduced in [8]. It exploits both idle/slack time
and can also switch the mode during memory-bound
or CPU-bound code regions. Unlike [6,8,13), no sou-
rce code analysis is required. Instead, a post—pass
optimizer inserts the instrumentation code automati~
cally. At run-time, an APM monitors the performance
counters and the idle/slack time to heuristically
compute and set the optimal mode. The APM is
independent of the operating system and can thus
also be attached to systems where the source code

is unavailable.

3. Adaptive Power Management

Our adaptive power management scheme is compro—
mised of three distinct phases: characterization of
the system, inserting APM API calls, and adaptive

370 RARBELI=FA Al 2w 2 o]E A 34 A A 8 F (20078

execution. First, a detailed power consumption and
execution time profile is obtained by running vari-
ous synthetic benchmarks on the target system.
The data obtained is approximated by linear models
which are later used by the APM at runtime to
compute the energy-optimal voltage/frequency set-
ting. Next, a post-pass optimizer analyzes the app-
lication binary and inserts code around potential
candidate regions to invoke the APM. Finally, the
instrumented binary is run on a system that is
linked with the APM. In a first phase, the APM
gathers information about the code regions identi-
fied by the post-pass optimizer by monitoring the
hardware performance counters. Once the APM has
collected enough information, it computes and swit-
ches to the energy-optimal setting at the beginning
of each region. The APM also monitors the system
idle time. The following three sections describe
these three phases in more detail.

3.1 Characterization of the System

The first phase of our adaptive power management
scheme is to obtain a detailed power and execution
time profile of the system.

Even for a fixed frequency/voltage setting, the
CPU power consumption varies slightly depending
on the cache miss ratio and the memoryv-to-ALU
instruction ratio. In CPU-bound code regions with
few memory accesses and a low cache miss ratio,
the CPU consumes more power because almost no
CPU stalls occur, whereas in memory-bound code
regions with many memory accesses and a high
cache miss ratio, the CPU consumes less power due
to memory stalls. On the other hand, the memory
system consumes more power in memory-bound
code regions and less in CPU-bound code regions.

The execution time of CPU-bound code regions
is dominated by the number of instructions, while
that of memory-bound code regions is dominated
by the number of memory operations and the cache
miss ratio.

To obtain a detailled power and execution time
profile, we run various synthetic benchmarks on the
target system while we measure the execution time
and the overall system power consumption. For the
synthetic benchmarks, we use a simple loop that is
executed a few million times. We vary both the

ALU~to-memory instruction ratio as well as the
(data) cache miss ratio. The extent ranges from
(almost) only ALU instructions to (almost) only
memory instructions, and the cache miss ratio is
varied between 0% and 100%. For each voltage/
frequency setting of the CPU, we measure the over-
all system power consumption and the execution
time for each benchmark (Figure 4).

The measured power and execution time are then
approximated by several linear functions. Using
these functions, we construct power and execution-
time estimation models that will be used by the
APM at run-time to determine the energy-optimal
mode. We explain our estimation models in detail
later in Section 4.

3.2 Application Binary Instrumentation

The purpose of the instrumentation phase is to
insert calls to the APM at suitable locations. Can-
didates regions for applying DVS are frequently
executed code regions such as loops and loop nests.
These candidate regions can be hand-picked by the
programmer or selected by a compiler/post-pass
optimizer based on static and/or dynamic call graph
information. Each candidate region is enclosed by a
pair of APM API calls as shown in Figure 1. Each
region is assigned a unique identifier.

In this work, we use a post-pass optimizer do
automatically detect and instrument candidate regions.
Using a post-pass optimizer instead of selecting the
regions by hand or at compile-time has several
advantages: manually inserting candidate regions
into the source code requires deep knowledge of
the code to be optimized. This is especially difficult
if the code has been written some time ago and
the programmer inserting the API calls is not the
original author of the code. These problems can be
avoided by having the compiler enclose the candidate
regions by API calls, which requires that the source
code for the application is- readily available. A post-
pass optimizer, on the other hand, operates fully
automatically, does not require access to the source
code, and can even instrument libraries.

Qur post-pass optimizer is based on the one
presented in [9,10]. The inputs to the post-pass
optimizer are application binaries and libraries in
the ARM ELF file format. The object files are dis—

FUHRAE A &z 2l 540 & 233 d2de 71y 3N

X = .
ameeéionsStart {id) ;
for (i=1; 1<N; i++) {
a=1* .;.
do {
X +=a + ..;
} while (a);
if (x> MAX X)) x = .;
;meegionstop (id) ;
y = cl(x);

Figure 1 A loop nest marked with APM calls
assembled into code and data segments. Code
blocks are further divided into functions composed
of basic blocks. The post-pass optimizer then
detects natural loops in the static call graph and
inserts two call statements to the APM, one in
front of the loop head and after the loop body. If a
loop contains inner loops, the APM calls are only
inserted before and after the outermost loop. After
all loops and Jloop nests are instrumented with
APM API calls, the post-pass optimizer re-assembles
the code into an optimized executable binary.

3.3 Adaptive Execution

The adaptive power manager (APM) is part of
the operating system. It enhances the standard
power-down—on-idle power manager, but does not
require any modifications to the scheduler or the
existing power manager; it is merely linked to the
operating system. This is useful in situations where
not the full source code of the OS is available.

The APM is invoked by applications that have
been instrumented with APM calls. For each region,
the APM measures the CPU performance counters
(PMU) and determines their characteristics. Based
on detailed energy models of the system, the APM
then selects the DVS setting
(Figure 2). Depending on the data obtained through
the CPU’s performance counters and the idle time
reported by the operation system, the APM operates
in two energy optimization modes.

331 CPU-/Memory-bound Code Regions

The APM constantly monitors the characteristics

energy-efficient

(instruction count, cache accesses, and cache misses)
of each region. Based on the CPU’s performance
counters and the models obtained through the

system characterization (Section 3.1), it computes

l APM-instrumented application.
APM APL
Yyy s
power & execution
;ﬁ%‘} APM time profile
calls —
A idle time DVs ﬂk PMU.
statistics.
\ 4
OS | OS power = » CPU
sleep
Figure 2 Interaction of OS, APM and APM-aware

applications

the energy-optimal CPU frequency by estimating
the execution time and the energy consumption of
the region. Whenever a region is entered, the APM
switches the CPU to the energy-optimal frequency
and back to the original frequency at the end of
the region. The APM maintains a correction factor
for each region by comparing the estimated execu-
tion time the measured time. The correction factor
is used in successive computations to improve
accuracy.

‘Whenever the cache miss ratio or the execution
time of a region changes significantly, the APM
recalculates the time and energy requirements of
the different frequencies and selects the one that
minimizes energy consumption. A maximum relative
performance penalty limit can be used to ensure
QoS.

3.3.2 Exploiting Idle Time

Usually, idle time is detected and exploited in the
OS scheduler. Since the APM is not an integral
part of the operating system, but rather just linked
to it, exploiting idle time is not straightforward.

To detect periodic behavior, such as the decoding
of a video frame once every 1/24™ of a second, the
APM not only monitors the performance counters,
but also the system 3dle time. The systemn has
been idle if the idle time between two invocations
of the APM increases. In this case, the APM
marks the current region r; as the head of a
periodic p, rp. The period ends as soon as the idle
time increases again. Figure 3 illustrates the idea.

Once a period p has been detected, the APM
measures the characteristics of the code over one
full period. Then, based on an algorithm similar to
PAST [26], it estimates the CPU frequency that

372 AR 55 =FA]
I 3 g
)
I EEE 1] 13 3
< . >
A x t
- Y
2
2
/'——' tiae
X Vv ¥ \d
\J

>
t

Figure 3 Detecting periodic behavior by looking at
the idle time. The APM API calls are
placed around the region r {(grey boxes).
The APM detects the periodic region p
by looking at the idle time, here conclu-
ding that a new period starts every three

invocations of region r.

minimizes the overall system energy consumption,
i.e. the frequency at which the CPU is slowed down
just as much such that there is no idle time left.

The APM constantly monitors and compares the
measured execution time to the estimated execution
time. For each frequency, it computes a correction
factor. The next estimate is multiplied by this
factor to improve the accuracy of the execution
time prediction.

To avoid oscillation between two frequency set—
tings, the APM only switches to a lower or higher
frequency if the idle time exceeds a threshold
value. The threshold values when to lower and
when to increase the CPU speed can be chosen

independently.

4. Estimating Energy Consumption and
Execution Time

Accurate estimation of execution time and power
consumption is one of the most crucial parts of our
method. We execute synthesized workloads and
measure the overall system energy consumption as
well as the execution time for all of these work-
loads. For each frequency setting, we vary the
cache miss ratio and the memory-to-ALU ratio.
Figure 4 shows an example of an energy profile.

The measured data is approximated by several

AlzEl g olE Al M A Al 8 Z(20078)

memory-to-ALU - “ miss
instruction ratio

Figure 4 Energy profile

linear functions and stored in a table inside the
APM.

To estimate the power consumption and execu-
tion time of a given region r, we use the following
formulas:

P = P(f,instr,acc, miss)
T, =T(f,instr,acc, miss)

where f, instr, acc, and miss are the frequency, the
number of instructions, the number of cache hits,
and the number of cache misses respectively. By
linearly interpolating the data in the tables, we can
estimate the power and time consumption for any
given load rate (acc/instr) and cache miss rate
(miss/acc).
For a region r, the energy consumption is esti-
mated by the following formula:
E, = P(f,,.,instr,acc, miss)-T(f,,,.instr, acc, miss)+
Eswilch(fold’fnew)
where Eswichlfor, frew) is the overhead to switch
from fua t0 frew and back.
The energy consumption for a periodic region p
can be computed by
Ep:n-E,(f,,instr,,acc,,miss,)
+P(fp,instrp,accp,missp)-T(fp,instrp,accp,missp)
+ Py, -(t, -n-T, =T(f,,instr,, acc,,,miss)
under the constraint
t, 2n~Tr+T(fp,instrp,accp,missp)

where ¢, is the measured period of p; n is the
number of regions per period; instrr, accr and missr

are the performance counters for the region r; and

FoAEAE AT F4Z2aY S BE ALY 288 MY 373

instrp, acc, and miss, are those for the entire

period p without the counters for the regions.

5. Evaluation Environment

We have implemented our APM for Microsoft
Windows CENET 4.2 [20] running on a develop-
ment board with an Intel XScale PXA255 processor
{14]. The board is equipped with a PXA255 pro-
cessor, 64MB of SDRAM, 64MB of Flash memory,
Ethemet, USB, Infrared, and a 320x160 pixel-wide
LCD screen. The board is powered by two vol-
tages; 3.3V and 50V. The power measurements
were performed using a high-performance data
acquisition device (DAC) that can sample several
inputs at 100 KHz simultaneously (Figure 5). The
synchronization of the power measurement with the
start/finish of the experiment is signaled by means
of the general purpose /O (GPIO) pins: at the
beginning of a measurement, a specific GPIO pin is
set high, and the end of the measurement is
signaled by setting the GPIO pin low.

. XScale
profiling development
computer board

DAC

I AC adaptor I

Figure 5 Experimental Setup

We use mpeg2dec and 3dview to evaluate our
technique. Mpeg2dec is an MPEG? video decoder
from MediaBench [17], and 3dview renders a three-
imensional view of a virtual world using only
fixed—point operations.

6. Experimental Results

6.1 CPU-/Memory-bound Code Regions

The Intel XScale PXA255 processor supports a
total of 10 different frequency settings. For each
frequency setting, not only the CPU core clock varies,
but also the CPU-to-memory bus, the memory-to—
LCD, and SDRAM frequencies differ
(Table 1). The data obtained from the system cha-

also the

Table 1 DVS Modes of the Intel XScale PXA255 CPU

, ferv: Sfepv—mem Suprm—rcp fspram
SCUNg | vy | [MHZ) [MH] [MH]
0 99.5 50 995 99.5
1 199.1 50 99.5 99.5
2 2986 50 995 j2io%5)
3 132.7 66 132.7 66
4 199.1 99.5 99.5 99.5
5 298.6 995 99.5 99.5
6 398.1 99.5 99.5 99.5
7 265.4 132.7 132.7 66
3 3318 1659 1659 83
9 398.1 196 99.5 99.5

energy

1
cache miss ratio

Figure 6 Energy consumption of the DVS modes
for different cache miss ratios. Note that
the fastest mode, setting 9, consumes the
least amount of energy independent of
the cache miss ratio

racterization reveals a surprising result: the fastest
frequency setting with a CPU clock of 398MHz is
the optimal setting in terms of energy consumption
for any given code region independent of the
instruction mix or the cache miss ratio (Figure 6).
This is because not only the CPU clock, but also
the CPU~to-memory bus speed is reduced. In other
words, even though the CPU stalls less for high
cache miss ratios at lower speeds, the slower speed
of the memory bus increases the execution time so
much that the additional energy consumed by the
longer execution time cancels out the energy sav-
ings obtained from running at a lower speed. Note
that this does not contradict the results in [12]
because in their experimental setup the memory
bus speed does not change with the CPU speed.

6.2 Exploiting idle Time

Figure 7 shows the measured system power con-

374 A K38} 35 =F A

frames

A \\
7\

| W\
NN s

V4

idle

System Power
Consumption

Time

Figure 7 Exploiting idle time for MPEG decoding

sumption for MPEG. The CPU runs at the highest
frequency when the benchmark starts running. The
spikes represent the decoding of one frame every
1/24th of a second. The beds between the spikes
occur because the CPU is put into a low-power
sleep mode by Window CE's standard power
manager (PM) whenever the CPU is idle. Spikes
between frames (e.g. between frame 1 and 2) are
caused by other tasks running simultaneously. The
APM detects the periodic behavior and starts
monitoring the performance counters for a couple of
frames. After it has collected enough information, it
DVS

switches to that mode at frame 6. After switching

computes the energy-optimal setting and
to the slower frequency, decoding a frame takes
longer as can be seen from the noticeably “wider”
spikes. Even after switching to the slower frequ-
ency, there is still some idle time left. This is
because the CPU is already running at the lowest
speed possible. Windows CE's power manager con—
tinues to put the CPU into a low-power sleep
mode during idle periods, but thanks to the reduced
core voltage and the reduced memory bus fre-
quency, the power consumption during idle periods
is noticeably lower than before.

Table 2 shows the results for different video
sizes. We compare the results to the default Win-
dows CE power management policy of putting the
CPU into a low-power sleep mode during idle
periods. For a video size of 256x192 pixels, our
APM achieves a reduction in energy consumption
of 4%, for 160x120 pixels 7.3%, and for 80x60
pixels 8%. The energy savings increase as the
video size decreases because the smaller the video

Azd 2 o]E A 34 B A 8 (0078

Table 2 Results for MPEG-2 Video Decoding

. Standard PM APM Power
Vslidzzo avg.power|avg.jitter|avg.power avg. jitter savings
(W] [ms] [W] [ms] (%)
80x60 2.873 1.10 2.644 1.29 8.0
160x120 3.189 1.10 2.955 1.06 73
256x192 3.507 1.12 3.365 1.25 4.0

size the more idle time the APM can exploit. Table
2 also reveals that the average jitter slightly
increases with our APM but is still within an
unnoticeable range. The variance of the jitter is
mainly caused by the frequency switch. The videos
used for our benchmarks were rather short (about
50 frames each). For longer videos, the average
jitter approaches the jitter value obtained with the
default Windows CE power management policy.
Figure 8 shows the results for 3dview. 3dview
with 30

frames per second. The number of objects to be

renders a three dimensional landscape
rendered depends on the position of the camera
which follows a pre-recorded path through the
virtual world. Figure 8(a) shows the complexity of
the scene, ie. the number of objects to be rendered.
Figure 8(b) displays the idle time as reported by
Windows CE. Finally, Figure 8(c) plots the CPU
frequency chosen by the APM. The indices of the
frequencies correspond to those in Table 1. At the
beginning of the run, our APM immediately swit-
ches the CPU from the fastest to the slowest mode,
and then settles on mode 1 (200MHz core clock).
The idle time decreases as the complexity of the
scene increases, and the APM switches to faster
CPU frequencies. When the idle time starts increa-
sing again, the APM selects a lower frequency to
save as much energy as possible.

Applying our technique to the workload depicted
in Figure 8(a) reduced the overall system energy
consumption by 9% with an average jitter of

0.02ms per frame.

7. Conclusions

In this paper, we have introduced an application-
specific and adaptive DVS algorithm that can
exploit both memory-bound code regions as well as

system idle time. Our adaptive power manager (APM)

FUANE 93 S4z2aY B4 B4 5

.
B |

idle percentage

(b)
9

R T R |
£ 7 -

]

- 5 F----}--

2 4F----t--

3 3 -

g2}

-l

(c)

Figure 8 Results for 3dview. (a) shows the scene
complexity (i.e., the number of objects to
render), (b) the idle percentage, and (c) is
CPU frequency mode selected by the APM

is linked to the existing operating system without
the need of modifying the scheduler or the power
managers of the OS. The APM contains linear
models of a detalled power consumption and exe-
cution time profile of the system. The profile is
obtained by running various synthetic instruction
mixes with different cache miss ratios on the
target platform while monitoring execution time and
power consumption.

A post-pass optimizer inserts calls to the APM
around potential candidate regions. At runtime, the
APM determines the characteristics of each region
by monitoring the CPU’'s performance counters. It
then computes the energy-optimal DVS setting for
each region and switches the CPU to that mode
when entering the region.

[

gaE 7Y 375

Idle time is exploited by detecting periodic

behavior of the APM regions and by monitoring
system idle time. Depending on the characteristics
of one period and the available idle time, the APM
switches to the energy-optimal mode. If the idle
percentage falls below a threshold, the APM swit-
ches to a faster mode to ensure that all deadlines
can be met.

We have performed our experiments on an

XScale development platform running Windows CE.
Even though the development platform consumes a
lot more energy compared to an energy-optimized
handheld product, we achieve overall system energy
savings of up to 9% compared to the default

Windows CE power manager.

References

[1] N.AbouGhazaleh, et al Collaborative Operating
System and Compiler Power Management for
Real-Time Applications. In ACM Transactions on
Embedded Computing Systems (TECS), February
2006.

[2]1 Advanced Micro Devices. AMD Power Now Tech-
nology. 2000.

[3] H.Aydin, et al Dynamic and Aggressive Sche-
duling Techniques for Power—Aware Real-Time
Systems. In the 22nd TEEE Real-Time Systems
Symposium, December 2001.

[4] TBurd, RBrodersen. Energy efficient CMOS micro-
processor design. In the 28th Hawali International
Conference on System Sciences, 1995.

[51 A.Chandrakasan, and R.Brodersen. Low Power
Digital CMOS Design. Kluver Academic Publishers,
1995.

[6] K.Choi, R.Soma, M.Pedram. Off-chip Latency-
Driven Dynamic Voltage and Frequency Scaling
for an MPEG Decoding. In Design Automation
Conference (DAC'04), June 2004.

[71 K.Choi, W.Lee, RSoma, M.Pedram. Dynamic Vol-
tage and Frequency Scaling Under a Precise
Energy Model Considering Variable and Fixed
Components of the System Power Dissipation. In
International Conference on Computer—Aided Design
(ICCAD'04), November 2004.

[8] B.Egger, JLee, H.Shin. An Application-Specific
and Adaptive Power Management Technique. In
First Int'l Workshop on Power-Aware Real-Time
Computing (PARC'04), September 2004.

[9] BEgger et al A Dynamic Code Placement
Technique for Scratchpad Memory using Postpass
Optimization. In Proceedings of the 2006 interna-
tional conference on Compilers, architecture and

376

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

HAR A EEA: A2 D 12 A 4B A 8 Q7Y

synthesis for embedded systems (CASES'06), October
2006.

B.Egger, JLee, HShin. Scratchpad Memory
Management for Portable Systems with a Memory
Management Unit. In Proceedings of the 6th ACM
& IEEE International conference on Embedded
software (EMSOFT'06), October 2006.

M. Fleischmann. Longrun Power Management.
White Paper of Transmeta Corporation, January
2001.

C-H. Hsu, UXKremer. The Design, Implementation,
and Evaluation of a Compiler Algorithm for CPU
Energy Reduction. In Programming Language
Design and Implementation (PLDI'03), June 2003.
CHughes, J.Srinivasan, S.Adve. Saving Energy
with Architectural and Frequency Adaptations for
Multimedia Applications. In Proceedings of the
34th Annual International Symposium on Microar—
chitecture, December 2001.
Intel PXAZ55 Processor.
January 2004.

Intel XScale Microarchitecture.
http://developer.intel.com/design/intelxscale/

T Ishihara, H.Yasuura. Voltage Scheduling Pro-
blem for Dynamically Variable Voltage Processors.
In Proceedings of the International Symposium on
Low Power Electronics and Design (ISLPED),
August 1998.

C.Lee, M Potkonjak, W.H.Mangione-Smith. Media-
Bench: a tool for evaluating and synthesizing mul-
timedia and communications systems. In 30th Ann-
ual International Symposium on Microarchitecture
(Micro'97), December 1997.

JLee, Y.Solihin, J. Torellas. Automatically Mapping
Code on an Intelligent Memory Architecture. In
Proceedings of the Seventh International Sympo-
sium on High-Performance Computer Architecture
(HPCA’01), January 2001.

J.Lorch, A.Smith. Improving dynamic voltage algo-
rithms with PACE. In Proceedings of the International
Conference on Measurement and Modeling of Com~—
puter Systems (SIGMETRICS 2001), June 2001.
Microsoft. Windows CE.NET.
http://msdn.microsoft.com/embedded/ce.net/
G.A.Paleologo, L.Benini, G.De Micheli. Policy Opti—
mization for Dynamic Power Management. In
Design Automation Conference (DAC98), June 1998.
H.Saputra, et al Energy-Conscious Compilation
Based on Voltage Scaling. In Joint Conference on
Languages, Compilers, and Tools for Embedded
Systems (LCTES02) and Software and Compiler
for Embedded Systems (SCOPES02), June 2002.
D.Shin, JKim, and S.lee. Low-Energy Intra-Task
Voltage Scheduling Using Static Timing Analysis.
In Design Automation Conference (DAC01), June
2001.

Developer's Manual,

[24] V.Swaminathan, K.Chakrabarty. Investigating the
effect of voltage switching on low-energy task
scheduling in hard real-time systems. In Asia
South Pacific Design Automation Conference
(ASP-DAC'01), January/February 2001.

AVarma, et al. A Control-Theoretic Approach to
Dynamic Voltage Scheduling. In International
Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems (CASES'03), October
2003.

M.Weiser, et al Scheduling for Reduced CPU
Energy. In Proceedings of the First Symposium
on Operating Systems Design and Implementation,
Usenix Association, November 1994.

F.Xie, M.Martinosi, S.Malik. Compile-Time Dynamic
Voltage Scaling Settings: Opportunities and Limits.
In Programming Language Design and Implemen-
tation (PLDI'03), June 2003.

R.Xu, et al Practical PACE for Embedded Sys-
tems. In Proceedings of the 4th ACM international
conference on Embedded software (EMSOFT'04),
October 2004.

[25]

[26]

(27}

(28]

19999 292 ETH Zurich, ZFEZ
28kl 2001d 2912 ETH Zurich,
FAFEFEE, AL 20039 ~EA Mg
st AFHETS v, AP EL
= Compilers, Computer Architecture,
Programming Languages, Embedded

Systems.

o Al 2

1991 Mgt E2lga, SRE 19953
v]=Z Standford University, Computer
Science, Ak 1999 ©l= University
of Tllinois at Urbana-Champaign, Com—
puter Science, SHAL 200083 ~2002'E)
"ot 2 Michigan State University, Depart-
ment of Computer Science and Engineering, &34
20024 ~ 84 Meoisn HFEFTEE Fas BHEks
Compilers, Computer Architecture, High Performance
Computing Systems, Embedded Systems

A g

19739 Medistne S8Ees,
19783 v)= Addeeolidta 4E3,
Al 1980 ©|F dAlxdista o)F3h
| T, AAb 1985 T AARsiER A
NPFE e, wab 1986E~AA A
st HAFHTEE 24 BHERS

Nedl, maie AR, GeEve) AHY

AN A

