• Title/Summary/Keyword: p-hydroxybenzoate

Search Result 33, Processing Time 0.025 seconds

Cloning of p-Hydroxybenzoate Degradation Genes and the Overexpression of Protocatechuate 4,5-Dioxygenase from Pseudomonas sp. K82

  • Yoon, Young-Ho;Park, Soon-Ho;Leem, Sun-Hee;Kim, Seung-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1995-1999
    • /
    • 2006
  • Pseudomonas sp. K82 cultured in p-hydroxybenzoate induces protocatechuate 4,5-dioxygenase (PCD 4,5) for p-hydroxybenzoate degradation. In this study, a 6.0-kbp EcoR1 fragment containing p-hydroxybenzoate degradation genes was cloned from the genome of Pseudomonas sp. K82. Sequence analysis identified four genes, namely, pcaD, pcaA, pcaB, and pcaC genes known to be involved in p-hydroxybenzoate degradation. Two putative 4-hydroxyphenylpyruvate dioxygenases and one putative oxidoreductase were closely located by the p-hydroxybenzoate degradation genes. The gene arrangement and sequences of these p-hydroxybenzoate degradation genes were similar to those of Comamonas testosteroni and Pseudomonas ochraceae. PcaAB (PCD4,5) was overexpressed in the expression vector pGEX-4T-3, purified using a GST column, and confirmed to have protocatechuate 4,5-dioxygenase activity. The N-terminal amino acid sequences of overexpressed PCD4,5 were identical with those of purified PCD4,5 from Pseudomonas sp. K82.

A study of the levels of natural preservatives in wild plants (식품보존에 이용된 식물의 천연보존료 함유량 연구)

  • Baek, Kyoung-A;Kang, Heun-Kag;Shin, Myoung-Hee;Park, Jong-Jin;Kim, Jong-Dae;Park, Seong-Min;Lee, Mi-Young;Im, Ji-Soon
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.529-535
    • /
    • 2014
  • To examine the levels of preservatives that occur naturally in food, wild plants used as commercial teas, rice cakes, or spices were studied according to the method of the Korean Food Code and analyzed with a gas chromatograph and HPLC. The levels of the natural preservatives (sodium dehydroacetate, sorbic acid, benzoic acid, methyl p-hydroxybenzoate, ethyl p-hydroxybenzoate, isopropyl p-hydroxybenzoate, propyl p-hydroxybenzoate, isobutyl p-hydroxybenzoate, butyl p-hydroxybenzoate, and propionic acid) in 21 cases were investigated against 15 kinds of wild plants. Six of 15 kinds of wild plants, such as pine needles, bamboo leaf, kudzu leaf, ramie leaf, mugwort, and nut pine leaf, were confirmed to have had sorbic acid, benzoic acid, and propionic acid. 8.201-21.839 mg/kg of benzoic acid was detected in the bamboo leaf, ramie leaf, pine needles, mugwort, kudzu leaf, and nut pine leaf. The sorbic acid contents of the bamboo leaf and the kudzu leaf were 5.630-24.995 mg/kg, respectively. The propionic acid content of the ramie leaf was 61.324-62.726 mg/kg. Nine kinds of wild plants, such as the Korean berchimia leaf, taro leaf, sasa borealis, lotus leaf, kuansh, chrysanthemum zawadskii, oak tree leaf, Chinese pepper leaf, and persimmon leaf, were not detected at the levels of the natural preservatives.

Characterization of Protocatechuate 4,5-Dioxygenase Induced from p-Hydroxybenzoate -Cultured Pseudomonas sp. K82

  • Yun, Sung-Ho;Yun, Chi-Young;Kim, Seung-Il
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.152-155
    • /
    • 2004
  • Pseudomonas sp. K82 has been reported to be an aniline-assimilating soil bacterium. However, this strain can use not only aniline as a sole carbon and energy source, but can also utilize benzoate, p-hydroxybenzoate, and aniline analogues. The strain accomplishes this metabolic diversity by using dif-ferent aerobic pathways. Pseudomonas sp. K82, when cultured in p-hydroxybenzoate, showed extradiol cleavage activity of protocatechuate. In accordance with those findings, our study attempted the puri-fication of protocatechuate 4,5-dioxygenase (PCD 4,5). However the purified PCD 4,5 was found to be very unstable during purification. After Q-sepharose chromatography was performed, the crude enzyme activity was augmented by a factor of approximately 4.7. From the Q-sepharose fraction which exhibited PCD 4,5 activity, two subunits of PCD4,5 (${\alpha}$ subunit and ${\beta}$ subunit) were identified using the N-terminal amino acid sequences of 15 amino acid residues. These subunits were found to have more than 90% sequence homology with PmdA and PmdB of Comamonas testosteroni. The molecular weight of the native enzyme was estimated to be approximately 54 kDa, suggesting that PCD4,5 exists as a het-erodimer (${\alpha}$$_1$${\beta}$$_1$). PCD 4,5 exhibits stringent substrate specificity for protocatechuate and its optimal activity occurs at pH 9 and 15 $^{\circ}C$. PCR amplification of these two subunits of PCD4,5 revealed that the ${\alpha}$ subunit and ${\beta}$ subunit occurred in tandem. Our results suggest that Pseudomonas sp. K82 induced PCD 4,5 for the purpose of p-hydroxybenzoate degradation.

Studies on Synthetic Preservatives in Foods -Part 1. Simultaneous Gas Chromatographic Determination of Sorbic Acid, Dehydroacetic Acid, Benzoic Acid, Butyl p-Hydroxybenzoate- (식품중(食品中)의 보존료(保存料)에 관(關)한 조사연구(調査硏究) (제1보)(第1報) -Gas Chromatography 에 의(依)한 Sorbic Acid, Dehydroacetic Acid, Benzoic Acid, Butyl p-Hydroxybenzoate의 동시정량(同時定量)-)

  • Ro, Hong-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.24-28
    • /
    • 1972
  • Synthetic food preservatives were analysed in foods collected in Seoul area on Aug. 10, 1971. Sorbic acid, benzoic acid, dehydroacetic acid and butyl p-hydroxybenzoate were determined by the simultaneous gas chromatography using FID at $200{\circ}C$ and a column of Chromosorb W coated with 5% $DGS{\sim}1%\;H_3PO_4$. The recovery rates of each preservative were from 76.7% to 96.3%. The calibration curves show linearity within a range from 0.3 to $2.5{\mu}g$ of standard preservatives. The results obtained were as follows: 1) Benzoic acid was used as well as butyl p-hydroxybenzoate in soy. 2) Sorbic acid was not found in soy. 3) From all breads and biscuits benzoic acid was found as trace. 4) Detected preservatives were below the range of permitted limit. 5) From 2 soy among 15 samples dehydroacetic acid was found.

  • PDF

Characterization of $\beta$-Ketoadipate Pathway from Multi-Drug Resistance Bacterium, Acinetobacter baumannii DU202 by Proteomic Approach

  • Park, Soon-Ho;Kim, Jae-Woo;Yun, Sung-Ho;Leem, Sun-Hee;Kahng, Hyung-Yeel;Kim, Seung-Il
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.632-640
    • /
    • 2006
  • In this study, the biodegradative activities of monocyclic aromatic compounds were determined from the multi-drug resistant (MDR) Acinetobacter baumannii, which were studied in the form of clinical isolates from a hospital in Korea. These bacteria were capable of biodegrading monocyclic aromatic compounds, such as benzoate and p-hydroxybenzoate. In order to determine which pathways are available for biodegradation in these stains, we conducted proteome analyses of benzoate, and p-hydroxybenzoate-cultured A. baumannii DU202, using 2-DE/MS analysis. As genome DB of A. baumannii was not yet available, MS/MS analysis or de novo sequencing methods were employed in the identification of induced proteins. Benzoate branch enzymes [catechol 1,2-dioxygenase (CatA) and benzoate dioxygenase $\alpha$ subunit (BenA)] of the $\beta$-ketoadipate pathway were identified under benzoate culture condition and p-hydroxybenzoate branch enzymes [protocatechuate 3,4-dioxygenas $\alpha$ subunit (PcaG) and 3-carboxy-cis,cis-muconate cycloisomerase (PcaR)] of the $\beta$-ketoadipate pathway were identified under p-hydroxybenzoate culture condition, respectively, thereby suggesting that strain DU202 utilized the $\beta$-ketoadipate pathway for the biodegradation of monocyclic aromatic compounds. The sequence analysis of two purified dioxygenases (CatA and PcaGH) indicated that CatA is closely associated with the CatA of Acinetobacter radiresistance, but PcaGH is only moderately associated with the PcaGH of Acinetobacter sp. ADPI. Interestingly, the fused form of PcaD and PcaC, carboxymuconolactone decarboxylase (PcaCD), was detected on benzoate-cultured A. baumannii DU202. These results indicate that A. baumannii DU202 exploits a different $\beta$-ketoadipate pathway from other Acinetobacter species.

Characterization of different Dioxygenases isolated from Delftia sp. JK-2 capable of degrading Aromatic Compounds, Aniline, Benzoate, and p-Hydroxybenzoate (방향족 화합물인 Aniline, benzoate, p-Hydroxybenzoate를 분해하는 Delftia sp. JK-2에서 분리된 Dioxygenases의 특성연구)

  • 오계헌;황선영;천재우;강형일
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 2004
  • The aim of this work was to investigate the purification and characterization dixoygenases isolated from Delftia sp. JK-2, which could utilize aniline, benzoate, and p-hydroxybenoate as sole carbon and energy source. Catechol 1,2-dioxygenase (C1, 2O), catechol 2,3-dioxygenase(C2, 3O), and protocatechuate 4,5-dioxygenase(4,5-PCD) were isolated by benzoate, aniline, and p-hydroxybenzoate. In initial experiments, several characteristics of C1 ,2O, C2, 3O, and 4,5-PCD separated with ammonium sulfate precipitation, DEAE-sepharose, and Q-sepharose were investigated. Specific activity of C1 ,2O, C2, 3O, and 4,5-PCD were approximately 3.3 unit/mg, 4.7 unit/mg, and 2.0 unit/mg. C1 ,2O and C2, 3O demonstrated their enzyme activities to other substrates, catechol and 4-methylcatechol. 4,5-PCD showed the specific activity to the only substrate, protocatechuate, but the substrates(e.g., catechol, 3-methylcatechol, 4-methylcatechol, 4-chlorocatechol, 4-nitrocatechol) did not show any specific activities in this work. The optimum temperature of C1, 2O, C2, 3O, and 4,5-PCD were 30$^{\circ}C$, and the optimal pHs were approximately 8, 8, and 7, respectively. Ag$\^$+/, Hg$\^$+/, Cu$\^$2+/ showed inhibitory effect on the activity of C1, 2O and C2, 3O, but Ag$\^$+/, Hg$\^$+/, Cu$\^$2+/, Fe$\^$3+/ showed inhibitory effect on the activity of 4,5-PCD. Molecular weight of the C1, 2O, C2, 3O, and 4,5-PCD were determined to approximately 60 kDa,35 kDa, and 62 kDa by SDS-PAGE.

Modification of N-Terminal Amino Acids of Fungal Benzoate Hydroxylase (CYP53A15) for the Production of p-Hydroxybenzoate and Optimization of Bioproduction Conditions in Escherichia coli

  • Tamaki, Shun;Yagi, Mitsuhiko;Nishihata, Yuki;Yamaji, Hideki;Shigeri, Yasushi;Uno, Tomohide;Imaishi, Hiromasa
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.439-447
    • /
    • 2018
  • The aromatic compound p-hydroxybenzoate (PHBA) is an important material with multiple applications, including as a building block of liquid crystal polymers in chemical industries. The cytochrome P450 (CYP) enzymes are beneficial monooxygenases for the synthesis of chemicals, and CYP53A15 from fungus Cochliobolus lunatus is capable of executing the hydroxylation from benzoate to PHBA. Here, we constructed a system for the bioconversion of benzoate to PHBA in Escherichia coli cells coexpressing CYP53A15 and human NADPH-P450 oxidoreductase (CPR) genes as a redox partner. For suitable coexpression of CYP53A15 and CPR, we originally constructed five plasmids in which we replaced the N-terminal transmembrane region of CYP53A15 with a portion of the N-terminus of various mammalian P450s. PHBA productivity was the greatest when CYP53A15 expression was induced at $20^{\circ}C$ in $2{\times}YT$ medium in host E. coli strain ${\Delta}gcvR$ transformed with an N-terminal transmembrane region of rabbit CYP2C3. By optimizing each reaction condition (reaction temperature, substrate concentration, reaction time, and E. coli cell concentration), we achieved 90% whole-cell conversion of benzoate. Our data demonstrate that the described novel E. coli bioconversion system is a more efficient tool for PHBA production from benzoate than the previously described yeast system.

Inactivation of the Preservative in Cosmetic by the Addition of Inorganic Powder (화장품에서 무기분말에 의한 방부제의 효능저하)

  • 정광수
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.11 no.1
    • /
    • pp.13-20
    • /
    • 1985
  • The decreased preservative effect by tale and $TiO_2$ for emulsions obtained with polyoxyethylene surfactant was studied by various analytical methods and biological test. The preservative effect of methyl p-hydroxybenzoate was decreased by the addition of talc and $TiO_2$ and this result was attributed to the adsorption of methyl p-hydroxybenzoate on them. Talc exhibited more decreased preservative effect than that of $TiO_2$. The amount of the adsorption of methyl p-phydroxybenzoate by talc at $20^{\circ}C$ could be represented by the following equation; $a=11.511C^{0.747}$.

  • PDF