• Title/Summary/Keyword: p-ZnO:(In,N)

Search Result 305, Processing Time 0.036 seconds

ZnO Based All Transparent UV Photodetector with Functional SnO2 Layer (SnO2 기능성 박막을 이용한 ZnO 기반의 투명 UV 광검출기)

  • Lee, Gyeong-Nam;Lee, Joo-Hyun;Kim, Joondong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.68-74
    • /
    • 2018
  • All transparent UV photodetector based on ZnO was fabricated with structure of NiO/ZnO/$SnO_2$/ITO by using RF and DC magnetron sputtering system. ZnO was deposited with 4 inch ZnO target (purity 99.99%) for a quality film. In order to build p-n junction up, p-type NiO was formed on n-type ZnO by using reactive sputtering method. The indium tin oxide (ITO) which is transparent conducting oxide (TCO) was applied as a transparent electrode for transporting electrons. To improve the UV photodetector performance, a functional $SnO_2$ layer was selected as an electron transporting and hole blocking layer, which actively controls the carrier movement, between ZnO and ITO. The photodetector (NiO/ZnO/$SnO_2$/ITO) shows transmittance over 50% as similar as the transmittance of a general device (NiO/ZnO/ITO) due to the high transmittance of $SnO_2$ for broad wavelengths. The functional $SnO_2$ layer for band alignment effectively enhances the photo-current to be $15{\mu}A{\cdot}cm^{-2}$ (from $7{\mu}A{\cdot}cm^{-2}$ of without $SnO_2$) with the quick photo-responses of rise time (0.83 ms) and fall time (15.14 ms). We demonstrated the all transparent UV photodetector based on ZnO and suggest the route for effective designs to enhance performance for transparent photoelectric applications.

Ferromagnetism and Anomalous Hall Effect in p-Zn0.99Mn0.01O:P

  • Kim, Hyun-Jung;Sim, Jae-Ho;Kim, Hyo-Jin;Hong, Soon-Ku;Kim, Do-Jin;Ihm, Young-Eon;Choo, Woong-Kil
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.95-98
    • /
    • 2005
  • We report hole-induced ferromagnetism in diluted magnetic semiconductor $Zn_{0.99}Mn_{0.01}$ films grown on $SiO_2/Si$ substrates by reactive sputtering. The p-type conduction with hole concentration over $10^{18}\;cm^{-3}$ is achieved by P doping followed by rapid thermal annealing at $800^{\circ}C$ in a $N_2$ atmosphere. The p-type $Zn_{0.99}Mn_{0.01}O:P$ is carefully examined by x-ray diffraction and transmission electron microscopy. The magnetic measurements for $p-Zn_{0.99}Mn_{0.01}O:P$ clearly reveal ferromagnetic characteristics with a Curie temperature above room temperature, whereas those for $n-Zn_{0.99}Mn_{0.01}O:P$ show paramagnetic behavior. The anomalous Hall effect at room temperature is observed for the p-type film. This result strongly supports hole-induced room temperature ferromagnetism in $p-Zn_{0.99}Mn_{0.01}O:P$.

Fabrication and characterization of n-ZnO:Ga/p-Si heterojunction light emitting diodes (n-ZnO:Ga/p-Si 이종접합 발광 다이오드의 제작 및 특성 평가)

  • Han, W.S.;Kong, B.H.;Ahn, C.H.;Cho, H.K.;Kim, B.S.;Hwang, D.M.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.97-98
    • /
    • 2008
  • n-ZnO/p-Si heterostructure is a good candidate for ZnO-based heterojunction light emitting diodes(LED) because of its competitive price and lower driving voltage. However, the conventional LED shows much lower extraction efficiency, because it has small top contact and large backside contact. In this structure, the injected current from the top contact enters the active region underneath the top contact. Thus, the emitted light is hindered by the opaque top contact. This problem can be solved by using a current-blocking layer(CBL) that prevents the current injection into the active region below the top contact.

  • PDF

Morphology control and optical properties of ZnO nanostructures grown by ultrasonic synthesis

  • Morales-Flores, N.;Galeazzi, R.;Rosendo, E.;Diaz1d, T.;Velumani, S.;Pal, U.
    • Advances in nano research
    • /
    • v.1 no.1
    • /
    • pp.59-70
    • /
    • 2013
  • ZnO nanostructures of rod-like, faceted bar, cup-end bars, and spindle shaped morphologies could be grown by a low power ultrasonic synthesis process. pH of the reaction mixture seems to plays an important role for defining the final morphology of ZnO nanostructures. While the solution pH as low as 7 produces long, uniform rod-like nanostructures of mixed phase (ZnO and $Zn(OH)_2$), higher pH of the reaction mixture produces ZnO nanostructures of different morphologies in pure hexagonal wurtzite phase. pH of the reaction as high as 10 produces bar shaped uniform nanostructures with lower specific surface area and lower surface and lattice defects, reducing the defect emissions of ZnO in the visible region of their photoluminescence spectra.

MoOx-Windowed High-Performing Transparent Photodetector (MoOx 기반의 고성능 투명 광검출기)

  • Park, Wang-Hee;Lee, Gyeongnam;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.387-392
    • /
    • 2017
  • A high-performing all-transparent photodetector was created by configuring a $MoO_x$/NiO/ZnO/ITO structure on a glass substrate. The ITO bottom layer was applied as a back contact. To achieve the transparent p/n junction, p-type NiO was coated on the n-type ZnO layer. Reactive sputtering was used to spontaneously form the ZnO or NiO layer. In order to improve the transparent photodetector performance, the functional $MoO_x$ window layer was used. Optically, the $MoO_x$ window provided a refractive index layer (n=1.39) lower than that of NiO (n=2), increasing the absorption of the incident light wavelengths (${\lambda}s$). Moreover, the $MoO_x$ window can provide a lower sheet resistance to improve the carrier collection for the photoresponses. The $MoO_x$/NiO/ZnO/ITO device showed significantly better photoresponses of 877.05 (at ${\lambda}$=460nm), 87.30 (${\lambda}$=520 nm), and 30.38 (${\lambda}$=620 nm), compared to 197.28 (${\lambda}$=460 nm), 51.74 (${\lambda}$=520 nm) and 25.30 (${\lambda}$=620 nm) of the NiO/ZnO/ITO device. We demonstrated the high-performing transparent photodetector by using the multifunctional $MoO_x$ window layer.

The study of diode characteristics on the doping concentration of ZnO films using the Si Substrate (Si 기판위에 형성된 ZnO 박막의 도핑 농도에 따른 다이오드 특성 연구)

  • Lee, J.H.;Jang, B.L.;Lee, J.H.;Kim, J.J.;Kim, H.S.;Jang, N.W.;Cho, H.K.;Kong, B.H.;Lee, H.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.216-217
    • /
    • 2008
  • Zinc-oxide films were deposited by pulsed laser deposition (PLD) technique using doped ZnO target (mixed $In_2O_3$ 0.1, 0.3, 0.6 at. % - atomic percentage) on the p-type Si(111) substrate. A little Indium has added at the n-ZnO films for the electron concentration control and enhanced the electrical properties. Also, post thermal annealed ZnO films are shown an enhanced structural and controled electron concentration by the annealing condition for the hetero junction diode of a better emitting characteristics. The electrical and the diode characteristics of the ZnO films were investigated by using Hall effect measurement and current-voltage measurement.

  • PDF

Enhanced pH Response of Solution-gated Graphene FET by Using Vertically Grown ZnO Nanorods on Graphene Channel

  • Kim, B.Y;Jang, M.;Shin, K.-S.;Sohn, I.Y;Kim, S.-W.;Lee, N.-E
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.434.2-434.2
    • /
    • 2014
  • We observe enhanced pH response of solution-gated field-effect transistors (SG-FET) having 1D-2D hybrid channel of vertical grown ZnO nanorods grown on CVD graphene (Gr). In recent years, SG-FET based on Gr has received a lot of attention for biochemical sensing applications, because Gr has outstanding properties such as high sensitivity, low detection limit, label-free electrical detection, and so on. However, low-defect CVD Gr has hardly pH responsive due to lack of hydroxyl group on Gr surface. On the other hand, ZnO, consists of stable wurtzite structure, has attracted much interest due to its unique properties and wide range of applications in optoelectronics, biosensors, medical sciences, etc. Especially, ZnO were easily grown as vertical nanorods by hydrothermal method and ZnO nanostructures have higher sensitivity to environments than planar structures due to plentiful hydroxyl group on their surface. We prepared for ZnO nanorods vertically grown on CVD Gr (ZnO nanorods/Gr hybrid channel) and to fabricate SG-FET subsequently. We have analyzed hybrid channel FETs showing transfer characteristics similar to that of pristine Gr FETs and charge neutrality point (CNP) shifts along proton concentration in solution, which can determine pH level of solution. Hybrid channel SG-FET sensors led to increase in pH sensitivity up to 500%, compared to pristine Gr SG-FET sensors. We confirmed plentiful hydroxyl groups on ZnO nanorod surface interact with protons in solution, which causes shifts of CNP. The morphology and electrical characteristics of hybrid channel SG-FET were characterized by FE-SEM and semiconductor parameter analyzer, respectively. Sensitivity and sensing mechanism of ZnO nanorods/Gr hybrid channel FET will be discussed in detail.

  • PDF

Calculation of Carrier Electron Concentration in ZnO Depending on Oxygen Partial Pressure

  • Kim, Eun-Dong;Park, Jong-Mun;Kim, Sang-Cheol;Kim, Nam-Kyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.222-232
    • /
    • 2000
  • The relationship between carrier electron concentration(n) and atmosphere oxygen partial pressure($P_{O_2}$ for pure ZnO calculated by the mass-action law, well-known as n ${\propto}P^{-1/m}_{O_2}$ where m = 4 or 6 for the single or the double ionization of the native donor defects due to its nonstoichiometry, respectively, is found in competition with the calculation result on the basis that the total defect concentration is the sum of those of unionized and ionized defects. Definitively, it is found inconsistent with the calculation result by employing the Fermi-Dirac(FD) statistics for their ionization processes. By application of the FD statistics law to the ionization while assuming the defect formation is still ruled by the mass-action law, the calculation results shows the concentration is proportional to $P^{-1/2}_{O_2}$ whenever they ionize singly and/or doubly. Conclusively we would like to propose the new theoretical relation n ${\propto}P^{-1/m}_{O_2}$ because the ionization processes of donors in ZnO should be treated with the electronoccupation probability at localized quantum states in its forbidden band created by the donor defects, i.e. the FD statistics

  • PDF

Hydrogen Gas Sensor Performance of a p-CuO/n-ZnO Thin-film Heterojunction (p-CuO/n-ZnO 이종접합 박막 구조의 수소 가스 특성 평가)

  • Yang, Yijun;Maeng, Bohee;Jung, Dong Geon;Lee, Junyeop;Kim, Yeongsam;An, Hee Kyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.337-342
    • /
    • 2022
  • Hydrogen (H2) gas is widely preferred for use as a renewable energy source owing to its characteristics such as environmental friendliness and a high energy density. However, H2 can easily reverse or explode due to minor external factors. Therefore, H2 gas monitoring is crucial, especially when the H2 concentration is close to the lower explosive limit. In this study, metal oxide materials and their p-n heterojunctions were synthesized by a hydrothermal-assisted dip-coating method. The synthesized thin films were used as sensing materials for H2 gas. When the H2 concentration was varied, all metal oxide materials exhibited different gas sensitivities. The performance of the metal oxide gas sensor was analyzed to identify parameters that could improve the performance, such as the choice of the metal oxide material, effect of the p-n heterojunctions, and operating temperature conditions of the gas sensor. The experimental results demonstrated that a CuO/ZnO gas sensor with a p-n heterojunction exhibited a high sensitivity and fast response time (134.9% and 8 s, respectively) to 5% H2 gas at an operating temperature of 300℃.

Microstructure and Sintering Behavior of ZnO Thermoelectric Materials Prepared by the Pulse-Current-Sintering Method

  • Shikatani, Noboru;Misawa, Tatsuya;Ohtsu, Yasunori;Fujita, Hiroharu;Kawakami, Yuji;Enjoji, Takashi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.682-683
    • /
    • 2006
  • Thermoelectric conversion efficiency of thermoelectric elements can be increased by using a structure combining n-type and p-type semiconductors. From the above point of view, attention was directed at ZnO as a candidate n-type semiconductor material and investigations were made. As the result, a dimensionless figure of merit ZT close to 0.28 (1073K) was obtained for specimens produced by the PCS (Pulse Current Sintering) method with addition of specified quantities of $TiO_2$, CoO, and $Al_2O_3$ to ZnO. It was found that the interstitial $TiO_2$ in the ZnO restrains the grain growth and CoO acts onto the bond between grains. The influence of the inclusion of $TiO_2$ and CoO onto the sintering behavior also was investigated.

  • PDF