• Title/Summary/Keyword: p-TSA catalyst

Search Result 8, Processing Time 0.024 seconds

The Conversion of Jatropha Oil into Biodiesel Using Acid / Alkali Catalysts (산 / 알칼리 촉매를 사용한 자트로파유의 바이오디젤화)

  • Hyun, Young-Jin;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.275-281
    • /
    • 2008
  • The esterification of free fatty acid in Jatropha oil added by propylene glycol using p-TSA catalyst was done, and then the transesterification of Jatropha oil added by 1.0vol% GMS as an emulsifier using TMAH, and mixed catalyst(60wt%-TMAH+ 40wt%-KOH) respectively was followed at $60^{\circ}C$. The esterification conversion at the 1:8 molar ratio of free fatty acid to methanol using 8.0wt% p-TSA was 94.7% within 60min. The overall conversion at the 1:8 molar ratio of Jatropha oil to methanol and $60^{\circ}C$ using mixed catalyst was 95.4%. The kinematic viscosity of Biodiesel using TMAH and mixed catalyst in 24h met the ASTM D-6751 above $30^{\circ}C$, and showed a little more than its criterion.

The Conversion of Mixed Fat of Beef Tallow and Jatropha Oil into Biodiesel Using Acid / Alkali Catalysts (산/알칼리 촉매를 사용한 우지와 자트로파유 혼합지방의 바이오디젤화)

  • Hyun, Young-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.179-185
    • /
    • 2009
  • The esterification of the reactants of Jatropha oil and methanol added by propyleneglycol was done using p-TSA catalyst. And then the emulsification of triglyceride and methanol was conduced by 1.0vol% GMS. The emulsified reactants were transesterified at $65^{\circ}C$ using TMAH and mixed catalyst (50wt%-TMAH+50wt%-NaOH) respectively. The esterification conversion at the 1:8 molar ratio of free fatty acid to methanol using 8.0wt% p-TSA was 94.7% within 80min. The overall conversion at the 1:8 molar ratio of mixed fat(50wt% Beef Tallow) to methanol and $65^{\circ}C$ using mixed catalyst was 95.4% The cloud point of Biodiesel decreased with the addition of petroleum diesel.

Effect of Organo Nanoclay and Catalyst on the Polyesterification between Adipic Acid and Diethylene Glycol (Adipic Acid와 Diethylene Glycol의 Polyesterification에 대한 유기나노점토와 촉매의 영향)

  • Park, Kyung-Kyu;Shin, Sung-Wook;Oh, Min-Ji;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • Effect of organo nanoclay (Cloisite 30B) on the polyesterification of adipic acid (AA) with diethylene glycol(DEG) was investigated with p-toluene sulfonic acid (p-TSA) (Br${\phi}$nsted acid) and butylchlorotin dihydroxide (Lewis acid) catalyst at 383 and 423 K. The initial [OH]/[COOH] molar ratio was two and the concentration of the catalysts in the reactants was 0.14 mol% based on the total reactants. The kinetics of the polyesterification was interpreted with the conversion data that was calculated from the acid values of the reactant-product mixture. The reaction rate of the polyesterification, which was catalyzed with p-TSA, exhibited the second-order dependency on AA concentration. When Butylchlorotin dihydroxide was used, the reaction rate revealed the first-order dependency on AA concentration. The activation energy of the reactions catalyzed with p-TSA and Butylchlorotin dihydroxide were calculated at 42.2 and 63.8 kJ/mol, respectively. Addition of 5 wt% Cloisite 30B to the reactant significantly diminished the activity of p-TSA, so the reaction rate decreased and the activation energy was calculated at 72.9 kJ/mol. Butylchlorotin dihydroxide catalyst maintained its activity regardless of the addition of Cloisite 30B to the reactant and the activation energy was calculated to 61.8 kJ/mol. Lewis acid catalyst, butylchlorotin dihydroxide, was more effective than Br${\phi}$nsted acid catalyst for the esterification of AA with DEG.

p-Toluenesulfonic Acid 촉매를 이용한 1,4-Sorbitan 제조

  • Im, Geun-Gil;Ryu, Hwa-Won;Lee, Jong-Il;Park, Don-Hui;Kim, In-Hong;Lee, Gwang-Yeon;Kim, Hae-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.894-897
    • /
    • 2001
  • This experiment was to determine the optimum conditions for D-sorbitol cyclization in the presence of p-toluenesulfonic acid(p-TSA) as acid catalyst before the esterification of sorbitol with fatty acids. The optimum conditions of hydration reaction to obtain maximum yield of 1,4-sorbitan were at $130^{\circ}C$, 200mmHg reduced pressure, after l50min and l%(w/w) p-TSA. In this condition the yield of 1,4-sorbitan was approximately 90%.

  • PDF

Hydrogel Synthesis using Glycosyl Methacrylate and Acrylate: 1. A Study on Chemo-Enzymatic Synthesis of Sorbitan Acrylate (배당화 메타크릴레이트와 아크릴에리트를 이용한 하이드로겔의 합성: I. 솔비탄 아크릴레이트의 화학.효소적 합성에 관한 연구)

  • 박돈희;임근길;정귀택;변기영;김인흥;이광연;김해성
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.222-228
    • /
    • 2003
  • This study was performed to research a chemo-enzymatic synthesis of sorbitan acrylate. It w as firstly to determine the optimum conditions for D-sorbitol cyclic reaction in the presence of p-toluenesulfonic acid (p-TSA) as catalyst material. It was secondly to find the optimum conditions for sorbitan acrylate synthesis using immobilized lipase Novozym 435 in t-butanol from its materials. The maximum yield of 1,4-sorbitan synthesis were obtained approximately 90% (w/w) at 13$0^{\circ}C$ and 200 mmHg vacuum pressure with 1% (w/w) p-TSA after 150 min reactin time on our experimental system. The product from optimum condition was less color than those obtained at higher temperatures and minimized byproduct and unreacted D-sorbitol. Sorbitan acrylate was synthesized to around 63.5% conversion of 1,4-sorbitan. The experimental optimum condition was found at 5$0^{\circ}C$, atmospheric pressure, 3% (w/v) Novozym 435, 50 g/L 1,4-sorbitan of initial reactant concentration, and 1:3 molar ratio of 1,4-sorbitan to acrylic acid.

Conversion of Jatropha Oil into Biodiesel in Continuous Process Using Alkali and Mixed Catalysts (연속공정에서 알칼리 및 혼합촉매를 사용한 자트로파유의 바이오디젤화)

  • Hyun, Young-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.394-399
    • /
    • 2009
  • The esterification of palmitic acid in Jatropha Oil using 8wt% p-TSA catalyst was done at the 1:8 molar ratio of oil to methanol and $65^{\circ}C$. The conversion of palmitic acid appeared to be 95.3% in 60min. After that, the continuous transesterification of the oil using 0.5wt% KOH, 0.8wt% TMAH mixed catalyst[40vol% KOH(0.5wt%) + 60vol% TMAH(0.8wt%)] and 1.1wt% TMAH was conducted with the flow rates and the molar ratios at $65^{\circ}C$. The overall conversion of Jatropha Oil increased with the decrease of flow rate and showed 95.6% with 9ml/min of flow rate at the 1:8 molar ratio of oil to methanol and $65^{\circ}C$. But it showed 87% with 15ml/min of flow rate at the same conditions. The recovery of methanol(%) appeared to be 86% at the 1:8 molar ratio of oil to methanol, mixed catalyst and $65^{\circ}C$.

Molecularly Imprinted Polymers Having Amidine and Imidazole Functional Groups As an Enzyme-Mimetic Catalyst for Ester Hydrolysis

  • Chen, Wen;Han, Dong-Keun;Ahn, Kwang-Duk
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.122-126
    • /
    • 2002
  • A molecularly imprinted polymer (MIP) having both amidine and imidazole functional groups in the active site has been prepared using p-nitrophenyl phosphate as a transition state analogue (TSA). The imprinted polymer MIP with amidine and imidazole found to have the highest hydrolysis activity compared with other MIPs with either amidine or imidazole groups only. It is postulated a cooperative effect between amidine and imidazole in the hydrolysis of p-nitrophenyl methyl carbonate (NPMC) as a substrate when both groups were arranged in proximity by molecular imprinting. The rate enhancement of the hydrolysis by MIP was 60 folds over the uncatalyzed solution reaction and two folds compared with the control non-imprinted polymer CPI having both functional groups. The enzyme-mimetic catalytic hydrolysis of p-nitrophenyl acetate by MIP was evaluated in buffer at pH 7.0 with $K_{m}$ of 1.06 mM and $k_{cat}$ of 0.137 $h^{-1}$ . . .

Enzymatic Synthesis of Sorbitan Methacrylate Effect of Reaction Temoerature and Acyl Donor (솔비탄 메타크릴레이트의 효소적 합성 - 반응온도와 아실 공여체의 영향 -)

  • Jeong Gwi Taek;Park Eun Soo;Byun Ki Young;Lee Hye Jin;Kim In Heung;Joe Yung Il;Kim Hae Sung;Song Yo Soon;Kim Do Heyoung;Ryu Hwa Won;Lee Woo Tae;Sun Woo Chang Shin;Park Don Hee
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.385-389
    • /
    • 2004
  • In this research, the chemo-enzymatic synthesis of sorbitan methacrylate was investigated to optimize reaction conditions. Firstly, sorbitan was manufactured by sorbitol cyclic reaction in the presence of p-toluenesulfonic acid (p-TSA) as catalyst material. Secondly, sorbitan methacrylate was synthesized by immobilized lipase Novozyme 435 with acyl donors in t-butanol. As a result of enzymatic synthesis of sorbitan methacrylate, the conversion yield reached about $65\%$ in the condition of initial sorbitan conc. 50 g/L, enzyme content $3\%$ (w/v) , molar ratio 1:3, reaction temperature 50^{circ}C and reaction time 42 hrs using methyl methacrylate as acyl donor. Comparing with acyl donors and reaction temperature, the conversion yield reached about 18, 65 and $80\%$ with methacrylic acid, methyl methacrylate and vinyl methacrylate as acyl donor, respectively. And optimum reaction temperature was 60, 50, and 50^{circ}C, respectively