• Title/Summary/Keyword: p-STAT-1

Search Result 156, Processing Time 0.022 seconds

Cripto Enhances Proliferation and Survival of Mesenchymal Stem Cells by Up-Regulating JAK2/STAT3 Pathway in a GRP78-Dependent Manner

  • Yun, SeungPil;Yun, Chul Won;Lee, Jun Hee;Kim, SangMin;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.464-473
    • /
    • 2018
  • Cripto is a small glycosylphosphatidylinositol-anchored signaling protein that can detach from the anchored membrane and stimulate proliferation, migration, differentiation, vascularization, and angiogenesis. In the present study, we demonstrated that Cripto positively affected proliferation and survival of mesenchymal stem cells (MSCs) without affecting multipotency. Cripto also increased expression of phosphorylated janus kinase 2 (p-JAK2), phosphorylated signal transducer and activator of transcription 3 (p-STAT3), 78 kDa glucose-regulated protein (GRP78), c-Myc, and cyclin D1. Notably, treatment with an anti-GRP78 antibody blocked these effects. In addition, pretreatment with STAT3 short interfering RNA (siRNA) inhibited the increase in p-JAK2, c-Myc, cyclin D1, and BCL3 levels caused by Cripto and attenuated the pro-survival action of Cripto on MSCs. We also found that incubation with Cripto protected MSCs from apoptosis caused by hypoxia or $H_2O_2$ exposure, and the level of caspase-3 decreased by the Cripto-induced expression of B-cell lymphoma 3-encoded protein (BCL3). These effects were sensitive to down-regulation of BCL3 expression by BCL3 siRNA. Finally, we showed that Cripto enhanced expression levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and hepatocyte growth factor (HGF). In summary, our results demonstrated that Cripto activated a novel biochemical cascade that potentiated MSC proliferation and survival. This cascade relied on phosphorylation of JAK2 and STAT3 and was regulated by GRP78. Our findings may facilitate clinical applications of MSCs, as these cells may benefit from positive effects of Cripto on their survival and biological properties.

Apoptotic Effects of psiRNA-STAT3 on 4T1 Breast Cancer Cells in Vitro

  • Zhou, Yue;Tian, Lin;Zhang, Ying-Chao;Guo, Bao-Feng;Zhou, Qing-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6977-6982
    • /
    • 2014
  • Background: The aim of this study was to investigate the effect of a Lipofectamine2000 (Life2000) Transfection Reagent transfected psiRNA-STAT3 plasmid on 4T1 breast cancer cells. Materials and Methods: MTT was used to detect the cell proliferation of breast cancer 4T1 cells at different periods (0h, 6h, 8h, 10h); the cell cycle was assessed by flow cytometry; variation of apoptosis and mitochondrial membrane potential was observed under a fluorescence microscope; immunohistochemical staining was used to determine the expression of caspase-3 and cyclin-D1 protein. Results: An obvious effect of inhibition to 4T1 cancer cells could be observed at 8h after the psiRNA-STAT3 was transfected. Typical alterations of apoptotic morphological features were visible in the psiRNA-STAT3 treatment group. Mitochondrial membrane potential decreased significantly, the number of cells was increased in G0/G1 phase, and the number of cells was decreased in S phase, and the data were statistically significant (p<0.05), compared with the Scramble and Mock groups. Expression of caspase-3 protein was increased significantly, while that of cyclin D1 was significantly decreased. Conclusions: Life2000 transfected psiRNA-STAT3 plasmid can inhibit 4T1 tumor cell proliferation and promote apoptosis of 4T1 tumor cells, which process depends on the regulation of expression of cyclin D1 and caspase-3 protein.

Delphinidin Suppresses Angiogenesis via the Inhibition of HIF-1α and STAT3 Expressions in PC3M Cells (전립선 암세포에서 delphinidin에 의한 HIF-1α와 STAT3 억제를 통한 혈관내피 성장 인자 발현 저해 효과)

  • Kim, Mun-Hyeon;Kim, Mi-Hyun;Park, Young-Ja;Chang, Young-Chae;Park, Yoon-Yub;Song, Hyun-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • Delphinidin is a blue-red pigment and one of the major anthocyanins in plants. It plays an important role in anti-oxidant, anti-inflammatory, anti-mutagenic and anti-cancer properties. In this study, we investigated the inhibitory effects of delphinidin on vascular endothelial growth factor (VEGF) gene expression, an important factor involved in angiogenesis and tumor progression in human prostate cancer. Delphinidin decreased levels of epidermal growth factor (EGF)-induced VEGF mRNA expression in PC-3M cells. The expression of the EGF-induced hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and signaling transducer and activator of transcription 3 (STAT3) proteins, which are the major transcription factors for VEGF, were inhibited by delphinidin. In addition, delphinidin decreases HRE-promoter reporter gene activity, suggesting that delphinidin can suppress the transcription of HIF-$1{\alpha}$ under EGF induction, leading to a decrease in the expression of VEGF. Delphinidin specifically suppressed the phosphorylation of Akt, p70S6K, and 4EBP1, but not the phosphorylation of EGFR. Therefore, our results suggest that delphinidin may inhibit human prostate cancer progression and angiogenesis by inhibiting HIF-$1{\alpha}$, STAT3 and VEGF gene expression.

Effect of quercetin on the production of nitric oxide in murine macrophages stimulated with lipopolysaccharide from Prevotella intermedia

  • Cho, Yun-Jung;Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.191-197
    • /
    • 2013
  • Purpose: Nitric oxide (NO) is a short-lived bioactive molecule that is known to play an important role in the pathogenesis of periodontal disease. In the current study, we investigated the effect of the flavonoid quercetin on the production of NO in murine macrophages activated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen related to inflammatory periodontal disease, and tried to elucidate the underlying mechanisms of action. Methods: LPS was isolated from P. intermedia ATCC 25611 cells by the standard hot phenol-water method. The concentration of NO in cell culture supernatants was determined by measuring the accumulation of nitrite. Inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) protein expression, phosphorylation of c-Jun N-terminal kinase (JNK) and p38, inhibitory ${\kappa}B$ $(I{\kappa}B)-{\alpha}$ degradation, and signal transducer and activator of transcription 1 (STAT1) phosphorylation were analyzed via immunoblotting. Results: Quercetin significantly attenuated iNOS-derived NO production in RAW246.7 cells activated by P. intermedia LPS. In addition, quercetin induced HO-1 protein expression in cells activated with P. intermedia LPS. Tin protoporphyrin IX (SnPP), a competitive inhibitor of HO-1, abolished the inhibitory effect of quercetin on LPS-induced NO production. Quercetin did not affect the phosphorylation of JNK and p38 induced by P. intermedia LPS. The degradation of $I{\kappa}B-{\alpha}$ induced by P. intermedia LPS was inhibited when the cells were treated with quercetin. Quercetin also inhibited LPS-induced STAT1 signaling. Conclusions: Quercetin significantly inhibits iNOS-derived NO production in murine macrophages activated by P. intermedia LPS via anti-inflammatory HO-1 induction and inhibition of the nuclear factor-${\kappa}B$ and STAT1 signaling pathways. Our study suggests that quercetin may contribute to the modulation of host-destructive responses mediated by NO and appears to have potential as a novel therapeutic agent for treating inflammatory periodontal disease.

Silibinin Inhibits Proliferation, Induces Apoptosis and Causes Cell Cycle Arrest in Human Gastric Cancer MGC803 Cells Via STAT3 Pathway Inhibition

  • Wang, Yi-Xin;Cai, Hong;Jiang, Gang;Zhou, Tian-Bao;Wu, Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6791-6798
    • /
    • 2014
  • Background: To investigate the effect of silibinin on proliferation and apoptosis in human gastric cancer cell line MGC803 and its possible mechanisms. Materials and Methods: Human gastric cancer cell line MGC803 cells were treated with various concentration of silibinin. Cellular viability was assessed by CCK-8 assay andapoptosis and cell cycle distribution by flow cytometry. Protein expression and mRNA of STAT3, and cell cycle and apoptosis regulated genes were detected by Western blotting and real-time polymerase chain reaction, respectively. Results: Silibinin inhibits growth of MGC803 cells in a dose- and time-dependent manner. Silibinin effectively induces apoptosis of MGC803 cells and arrests MGC803 cells in the G2/M phase of the cell cycle, while decreasing the protein expression of p-STAT3, and of STAT3 downstream target genes including Mcl-1, Bcl-xL, survivin at both protein and mRNA levels. In addition, silibinin caused an increase in caspase 3 and caspase 9 protein as well as mRNA levels. Silibinin caused G2/M phage arrest accompanied by a decrease in CDK1 and Cyclin B1 at protein and mRNA levels.. Conclusions: These results suggest that silibinin inhibits the proliferation of MGC803 cells, and it induces apoptosis and causes cell cycle arrest by down-regulating CDK1, cyclinB1, survivin, Bcl-xl, Mcl-1 and activating caspase 3 and caspase 9, potentially via the STAT3 pathway.

High fat diet-induced obesity leads to proinflammatory response associated with higher expression of NOD2 protein

  • Kim, Min-Soo;Choi, Myung-Sook;Han, Sung-Nim
    • Nutrition Research and Practice
    • /
    • v.5 no.3
    • /
    • pp.219-223
    • /
    • 2011
  • Obesity has been reported to be associated with low grade inflammatory status. In this study, we investigated the inflammatory response as well as associated signaling molecules in immune cells from diet-induced obese mice. Four-week-old C57BL mice were fed diets containing 5% fat (control) or 20% fat and 1% cholesterol (HFD) for 24 weeks. Splenocytes ($1{\times}10^7$ cells) were stimulated with $10\;{\mu}g/mL$ of lipopolysaccharide (LPS) for 6 or 24 hrs. Production of interleukin (IL)-$1{\beta}$, IL-6, and TNF-${\alpha}$ as well as protein expression levels of nucleotide-binding oligomerization domain (NOD)2, signal transducer and activator of transcription (STAT)3, and pSTAT3 were determined. Mice fed HFD gained significantly more body weight compared to mice fed control diet ($28.2{\pm}0.6$ g in HFD and $15.4{\pm}0.8$ g in control). After stimulation with LPS for 6 hrs, production of IL-$1{\beta}$ was significantly higher (P=0.001) and production of tumor necrosis factor (TNF)-${\alpha}$ tended to be higher (P < 0.064) in the HFD group. After 24 hrs of LPS stimulation, splenocytes from the HFD group produced significantly higher levels of IL-6 ($10.02{\pm}0.66$ ng/mL in HFD and $7.33{\pm}0.56$ ng/mL in control, P=0.005) and IL-$1{\beta}$ ($121.34{\pm}12.72$ pg/mL in HFD and $49.74{\pm}6.58$ pg/mL in control, P < 0.001). There were no significant differences in the expression levels of STAT3 and pSTAT3 between the HFD and the control groups. However, the expression level of NOD2 protein as determined by Western blot analysis was 60% higher in the HFD group compared with the control group. NOD2 contributes to the induction of inflammation by activation of nuclear factor ${\kappa}B$. These findings suggest that diet-induced obesity is associated with increased inflammatory response of immune cells, and higher expression of NOD2 may contribute to these changes.

The Protective Effects of Scutellaria baicalensis Georgi Water Extracts on the Immunomodulatory Effects on Liver Damage Induced by Carbon Tetrachloride in Rats (사염화탄소로 간 손상이 유발된 흰쥐에서 황금(黃芩) 열수 추출물이 면역작용에 미치는 효과)

  • An, Chi-Sun;Jin, Hai-Lan;Jeon, Yun-Hui;Lim, Beong-Ou
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.4
    • /
    • pp.273-279
    • /
    • 2009
  • GATA-binding protein-3 (GATA-3) and T-box expressed in T-cells (T-bet) are now considered as master transcription factors involving Th cell differentiation, but the roles of these factors are still uncertain in vivo. This study was conducted to investigate the expression of these transcription factors in the liver damage induced by carbon tetrachloride ($CCl_4$) in rats. In this study, liver damage were induced with Scutellaria baicalensis Georgi water extracts (SBW) and followed for 4 weeks. The expression of GATA-3 and T-bet protein in liver damage induced by $CCl_4$ and the serum levels of immunoglobulin A (IgA), IgE were studied after 4 weeks of treatment. We found that effect of SBW on IFN-$\gamma$, STAT1, pSTAT1 and T-bet was decreased in vivo. Several genes were demonstrated to be IL-4 inducible prior to the discovery of STAT6. $CCl_4$+SBW group was significantly lower than $CCl_4$ group in IL-4, STAT6, pSTAT6 and GATA-3. Our data indicate that cytokine protein production were increased in $CCl_4$ group and $CCl_4$+SBW group. From these results, water extracts obtained from Scutellaria baicalensis Georgi may have an immunoregulatory effect in the liver induced by $CCl_4$ of rats.

Pan-Caspase Inhibitor zVAD Induces Necroptotic and Autophagic Cell Death in TLR3/4-Stimulated Macrophages

  • Chen, Yuan-Shen;Chuang, Wei-Chu;Kung, Hsiu-Ni;Cheng, Ching-Yuan;Huang, Duen-Yi;Sekar, Ponarulselvam;Lin, Wan-Wan
    • Molecules and Cells
    • /
    • v.45 no.4
    • /
    • pp.257-272
    • /
    • 2022
  • In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.

Mechanism Underlying the Anti-Inflammatory Action of Piceatannol Induced by Lipopolysaccharide (당지질로 유도한 염증반응에서 Piceatannol의 항염증 기전 연구)

  • Cho, Han-Jin;Shim, Jae-Hoon;So, Hong-Seob;YoonPark, Jung-Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1226-1234
    • /
    • 2012
  • 3,4,3',5'-Tetrahydroxy-trans-stilbene (piceatannol) is a derivative of resveratrol with a variety of biological activities, including anti-inflammatory, anti-proliferative, and anti-cancer activities. We assessed the mechanisms by which piceatannol inhibits inflammatory responses using lipopolysaccharide (LPS)-treated Raw264.7 murine macrophages. Piceatannol (0~10 ${\mu}mol/L$) decreased LPS-induced release of nitric oxide, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, IL-$1{\beta}$, and inhibited LPS-induced protein expression of inducible nitric oxide synthase (iNOS). Activation of nuclear factor-kappaB (NF-${\kappa}B$), activator protein (AP)-1, and signal transducer and activator of transcription 3 (STAT3) are crucial steps during an inflammatory response. Piceatannol prevented LPS-induced degradation of inhibitor of ${\kappa}B$ ($I{\kappa}B$), translocation of p65 to the nucleus, and phosphorylation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Additionally, piceatannol inhibited LPS-induced phosphorylation of STAT3 and IL-6-induced translocation of STAT3 to the nucleus. Furthermore, piceatannol increased the protein and mRNA levels of hemeoxygenase (HO)-1, the rate-limiting enzyme of heme catabolism that plays a critical role in mediating antioxidant and anti-inflammatory effects. Piceatannol further induced antioxidant response elements (ARE)-driven luciferase activity in Raw264.7 cells transfected with an ARE-luciferase reporter construct containing the enhancer 2 and minimal promoter region of HO-1. These results suggest that piceatannol exerts anti-inflammatory effects via the down-regulation of iNOS expression and up-regulation of HO-1 expression.

Immunoregulatory Effects of Water Extracts of Inonotus obliquus in Carbon Tetrachloride-Induced Liver Damage Animal Model (사염화탄소로 유도된 간 손상 동물모델에서 차가버섯 열수 추출물이 면역 조절 기능에 미치는 영향)

  • An, Chi-Sun;Jin, Hai-Lan;Jeon, Yun-Hui;Bak, Jong-Phil;Kim, Jong-Dai;Yoon, Jung-Han;Lim, Beong-Ou
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Inonotus obliquus is one of the immune-regulatory substances and is recognized to play the role in the metabolic process of inflammation, allergy and immuntiy. The purpose of this study was to evaluate the effects of water extracts of Inonotus obliquus (IOW) on the liver lymphocyte immune function in the Sprague-Dawley male rats treated with carbon tetrachloride ($CCl_4$) to induce liver damage. Rats were fed with each experimental diet and water for 4 weeks. We found that effects of IOW on interferon-gamma (IFN-$\gamma$), signal transducer and activator of transcription 1 (STAT1), phospho-signal transducer and activator of transcription 1 (pSTAT1) and GATA-binding protein 3 (GATA-3) were decrease in vivo. Interleukin-4 (IL-4), STAT6, pSTAT6 and T-box expressed in T-cells (T-bet) decreased significantly lower in $CCl_4$+IOW group than the $CCl_4$ group. Our data indicated that cytokine protein production were increased in $CCl_4$ group and $CCl_4$+IOW group. As a result of this study, we assume that IOW fed could regulate the immuno-modulating functions through regulate the cytokine production capacity activated by liver damage.