Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0193

Pan-Caspase Inhibitor zVAD Induces Necroptotic and Autophagic Cell Death in TLR3/4-Stimulated Macrophages  

Chen, Yuan-Shen (Department of Neurosurgery, National Taiwan University Hospital Yunlin Branch)
Chuang, Wei-Chu (Department of Pharmacology, College of Medicine, National Taiwan University)
Kung, Hsiu-Ni (Graduate Institute of Anatomy and Cell Biology, National Taiwan University)
Cheng, Ching-Yuan (Department of Pharmacology, College of Medicine, National Taiwan University)
Huang, Duen-Yi (Department of Pharmacology, College of Medicine, National Taiwan University)
Sekar, Ponarulselvam (Graduate Institute of Medical Sciences, Taipei Medical University)
Lin, Wan-Wan (Department of Pharmacology, College of Medicine, National Taiwan University)
Abstract
In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.
Keywords
autophagy; interferon; JAK/STAT1; macrophage; necrosis; zVAD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, H.S. and Lee, M.S. (2005). Essential role of STAT1 in caspase-independent cell death of activated macrophages through the p38 mitogen-activated protein kinase/STAT1/reactive oxygen species pathway. Mol. Cell. Biol. 25, 6821-6833.   DOI
2 Lin, Y.C., Kuo, H.C., Wang, J.S., and Lin, W.W. (2012). Regulation of inflammatory response by 3-methyladenine involves the coordinative actions on Akt and glycogen synthase kinase 3β rather than autophagy. J. Immunol. 189, 4154-4164.   DOI
3 McComb, S., Cessford, E., Alturki, N.A., Joseph, J., Shutinoski, B., Startek, J.B., Gamero, A.M., Mossman, K.L., and Sad, S. (2014). Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc. Natl. Acad. Sci. U. S. A. 111, E3206-E3213.
4 Pasparakis, M. and Vandenabeele, P. (2015). Necroptosis and its role in inflammation. Nature 517, 311-320.   DOI
5 Schmalz, G., Krifka, S., and Schweikl, H. (2011). Toll-like receptors, LPS, and dental monomers. Adv. Dent. Res. 23, 302-306.   DOI
6 Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu. Rev. Immunol. 21, 335-376.   DOI
7 Vandenabeele, P., Galluzzi, L., Vanden Berghe, T., and Kroemer, G. (2010a). Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700-714.   DOI
8 Seya, T., Shime, H., Takaki, H., Azuma, M., Oshiumi, H., and Matsumoto, M. (2012). TLR3/TICAM-1 signaling in tumor cell RIP3-dependent necroptosis. Oncoimmunology 1, 917-923.   DOI
9 Wu, Y.T., Tan, H.L., Shui, G., Bauvy, C., Huang, Q., Wenk, M.R., Ong, C.N., Codogno, P., and Shen, H.M. (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285, 10850-10861.   DOI
10 Samie, M., Lim, J., Verschueren, E., Baughman, J.M., Peng, I., Wong, A., Kwon, Y., Senbabaoglu, Y., Hackney, J.A., Keir, M., et al. (2018). Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nat. Immunol. 19, 246-254.   DOI
11 Shi, C.S. and Kehrl, J.H. (2008). MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J. Biol. Chem. 283, 33175-33182.   DOI
12 Takemura, R., Takaki, H., Okada, S., Shime, H., Akazawa, T., Oshiumi, H., Matsumoto, M., Teshima, T., and Seya, T. (2015). PolyI:C-induced, TLR3/RIP3-dependent necroptosis backs up immune effector-mediated tumor elimination in vivo. Cancer Immunol. Res. 3, 902-914.   DOI
13 Vandenabeele, P., Declercq, W., Van Herreweghe, F., and Vanden Berghe, T. (2010b). The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci. Signal. 3, re4.   DOI
14 Wang, J., Whiteman, M.W., Lian, H., Wang, G., Singh, A., Huang, D., and Denmark, T. (2009). A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J. Biol. Chem. 284, 21412-21424.   DOI
15 Galluzzi, L., Kepp, O., Chan, F.K., and Kroemer, G. (2017). Necroptosis: mechanisms and relevance to disease. Annu. Rev. Pathol. 12, 103-130.   DOI
16 Chen, C.Y., Hung, Y.F., Tsai, C.Y., Shih, Y.C., Chou, T.F., Lai, M.Z., Wang, T.F., and Hsueh, Y.P. (2021). Transcriptomic analysis and C-terminal epitope tagging reveal differential processing and signaling of endogenous TLR3 and TLR7. Front. Immunol. 12, 686060.   DOI
17 Gao, T., Zhang, S.P., Wang, J.F., Liu, L., Wang, Y., Cao, Z.Y., Hu, Q.K., Yuan, W.J., and Lin, L. (2018). TLR3 contributes to persistent autophagy and heart failure in mice after myocardial infarction. J. Cell. Mol. Med. 22, 395-408.   DOI
18 Chen, T.Y., Chi, K.H., Wang, J.S., Chien, C.L., and Lin, W.W. (2009). Reactive oxygen species are involved in FasL-induced caspase-independent cell death and inflammatory responses. Free Radic. Biol. Med. 46, 643-655.   DOI
19 Denton, D. and Kumar, S. (2019). Autophagy-dependent cell death. Cell Death Differ. 26, 605-616.   DOI
20 Doherty, J. and Baehrecke, E.H. (2018). Life, death and autophagy. Nat. Cell Biol. 20, 1110-1117.   DOI
21 Gorentla, B.K., Wan, C.K., and Zhong, X.P. (2011). Negative regulation of mTOR activation by diacylglycerol kinases. Blood 117, 4022-4031.   DOI
22 Grootjans, S., Vanden Berghe, T., and Vandenabeele, P. (2017). Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 24, 1184-1195.   DOI
23 Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M., and Tschopp, J. (2004). RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5, 503-507.   DOI
24 Jabir, M.S., Ritchie, N.D., Li, D., Bayes, H.K., Tourlomousis, P., Puleston, D., Lupton, A., Hopkins, L., Simon, A.K., Bryant, C., et al. (2014). Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and beta-interferon production during Pseudomonas aeruginosa infection. Cell Host Microbe 15, 214-227.   DOI
25 Khan, M.J., Rizwan Alam, M., Waldeck-Weiermair, M., Karsten, F., Groschner, L., Riederer, M., Hallstrom, S., Rockenfeller, P., Konya, V., Heinemann, A., et al. (2012). Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells. J. Biol. Chem. 287, 21110-21120.   DOI
26 Kim, S.J. and Li, J. (2013). Caspase blockade induces RIP3-mediated programmed necrosis in Toll-like receptor-activated microglia. Cell Death Dis. 4, e716.   DOI
27 Kist, M. and Vucic, D. (2021). Cell death pathways: intricate connections and disease implications. EMBO J. 40, e106700.
28 Bonapace, L., Bornhauser, B.C., Schmitz, M., Cario, G., Ziegler, U., Niggli, F.K., Schafer, B.W., Schrappe, M., Stanulla, M., and Bourquin, J.P. (2010). Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J. Clin. Invest. 120, 1310-1323.   DOI
29 Witt, A. and Vucic, D. (2017). Diverse ubiquitin linkages regulate RIP kinases-mediated inflammatory and cell death signaling. Cell Death Differ. 24, 1160-1171.   DOI
30 Wu, Y.T., Tan, H.L., Huang, Q., Sun, X.J., Zhu, X., and Shen, H.M. (2011). zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFα mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ. 18, 26-37.   DOI
31 Legarda, D., Justus, S.J., Ang, R.L., Rikhi, N., Li, W., Moran, T.M., Zhang, J., Mizoguchi, E., Zelic, M., Kelliher, M.A., et al. (2016). CYLD proteolysis protects macrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type I IFN. Cell Rep. 15, 2449-2461.   DOI
32 Kaiser, W.J., Sridharan, H., Huang, C., Mandal, P., Upton, J.W., Gough, P.J., Sehon, C.A., Marquis, R.W., Bertin, J., and Mocarski, E.S. (2013). Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288, 31268-31279.   DOI
33 Chen, S.Y., Chiu, L.Y., Ma, M.C., Wang, J.S., Chien, C.L., and Lin, W.W. (2011). zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation. Autophagy 7, 217-228.   DOI
34 Dey, A., Mustafi, S.B., Saha, S., Dwivedi, S.K.D., Mukherjee, P., and Bhattacharya, R. (2016). Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy 12, 659-670.   DOI
35 Hanson, B. (2016). Necroptosis: a new way of dying? Cancer Biol. Ther. 17, 899-910.   DOI
36 Yuan, J., Amin, P., and Ofengeim, D. (2019). Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 20, 19-33.   DOI
37 Xia, X., Lei, L., Wang, S., Hu, J., and Zhang, G. (2020). Necroptosis and its role in infectious diseases. Apoptosis 25, 169-178.   DOI
38 Xu, Y., Jagannath, C., Liu, X.D., Sharafkhaneh, A., Kolodziejska, K.E., and Eissa, N.T. (2007). Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135-144.   DOI
39 Xu, Y., Kim, S.O., Li, Y., and Han, J. (2006). Autophagy contributes to caspase-independent macrophage cell death. J. Biol. Chem. 281, 19179-19187.   DOI
40 Zhan, Z., Xie, X., Cao, H., Zhou, X., Zhang, X.D., Fan, H., and Liu, Z. (2014). Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy 10, 257-268.   DOI
41 Zhang, X., Matsuda, M., Yaegashi, N., Nabe, T., and Kitatani, K. (2020). Regulation of necroptosis by phospholipids and sphingolipids. Cells 9, 627.   DOI
42 Zheng, M. and Kanneganti, T.D. (2020). The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol. Rev. 297, 26-38.   DOI
43 He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., and Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100-1111.   DOI
44 Lin, Y., Choksi, S., Shen, H.M., Yang, Q.F., Hur, G.M., Kim, Y.S., Tran, J.H., Nedospasov, S.A., and Liu, Z.G. (2004). Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem. 279, 10822-10828.   DOI
45 Liu, W., Wu, H., Chen, L., Wen, Y., Kong, X., and Gao, W.Q. (2015). Park7 interacts with p47(phox) to direct NADPH oxidase-dependent ROS production and protect against sepsis. Cell Res. 25, 691-706.   DOI
46 Kim, J.Y., Choi, G.E., Yoo, H.J., and Kim, H.S. (2017). Interferon potentiates Toll-like receptor-induced prostaglandin D2 production through positive feedback regulation between signal transducer and activators of yranscription 1 and reactive oxygen species. Front. Immunol. 8, 1720.   DOI
47 Mandal, R., Barron, J.C., Kostova, I., Becker, S., and Strebhardt, K. (2020). Caspase-8: the double-edged sword. Biochim. Biophys. Acta Rev. Cancer 1873, 188357.
48 Martinet, W., De Meyer, G.R., Timmermans, J.P., Herman, A.G., and Kockx, M.M. (2006). Macrophages but not smooth muscle cells undergo benzyloxycarbonyl-Val-Ala-DL-Asp(O-Methyl)-fluoromethylketone-induced nonapoptotic cell death depending on receptor-interacting protein 1 expression: implications for the stabilization of macrophage-rich atherosclerotic plaques. J. Pharmacol. Exp. Ther. 317, 1356-1364.   DOI
49 Pan, Z.K., Fisher, C., Li, J.D., Jiang, Y., Huang, S., and Chen, L.Y. (2011). Bacterial LPS up-regulated TLR3 expression is critical for antiviral response in human monocytes: evidence for negative regulation by CYLD. Int. Immunol. 23, 357-364.   DOI
50 Rosenbaum, D.M., Degterev, A., David, J., Rosenbaum, P.S., Roth, S., Grotta, J.C., Cuny, G.D., Yuan, J., and Savitz, S.I. (2010). Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J. Neurosci. Res. 88, 1569-1576.   DOI
51 Liu, X., Wu, X.P., Zhu, X.L., Li, T., and Liu, Y. (2017). IRG1 increases MHC class I level in macrophages through STAT-TAP1 axis depending on NADPH oxidase mediated reactive oxygen species. Int. Immunopharmacol. 48, 76-83.   DOI
52 Lai, M., Yao, H., Shah, S.Z.A., Wu, W., Wang, D., Zhao, Y., Wang, L., Zhou, X., Zhao, D., and Yang, L. (2018). The NLRP3-caspase 1 inflammasome negatively regulates autophagy via TLR4-TRIF in prion peptide-infected microglia. Front. Aging Neurosci. 10, 116.   DOI
53 Lin, Y.C., Huang, D.Y., Chub, C.L., and Lin, W.W. (2010). Anti-inflammatory actions of Syk inhibitors in macrophages involve non-specific inhibition of toll-like receptors-mediated JNK signaling pathway. Mol. Immunol. 47, 1569-1578.   DOI