• Title/Summary/Keyword: p-MOSFET

Search Result 228, Processing Time 0.025 seconds

Degradation Characteristics of Mobility in Channel of P-MOSFET's by Hot Carriers (핫 캐리어에 의한 피-모스 트랜지스터의 채널에서 이동도의 열화 특성)

  • 이용재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 1998
  • We have studied how the characteristics degradation between effective mobility and field effect mobility of gate channel in p-MOSFET's affects the gate channel length being follow by increased stress time and increased drain-source voltage stress. The experimental results between effective and field-effect mobility were analyzed that the measurement data are identical at the point of minimum slope in threshold voltage, the other part is different, that is, the effective mobility it the faster than the field-effect mobility. Also, It was found that the effective and field-effect mobility. Also, It was found that the effective and field-effect mobility of p-MOSFET's with short channel are increased by decreased channel length, increased stress time and increased drain-source voltage stress.

  • PDF

Hot Electron Induced Device Degradation in Gate-All-Around SOI MOSFETs (Gate-All-Around SOI MOSFET의 소자열화)

  • 최낙종;유종근;박종태
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.32-38
    • /
    • 2003
  • This works reports the measurement and analysis results on the hot electron induced device degradation in Gate-All-Around SOI MOSFET's, which were fabricated using commercially available SIMOX material. It is observed that the worst-case condition of the device degradation in nMOSFETs is $V_{GS}$ = $V_{TH}$ due to the higher impact ionization rate when the parasitic bipolar transistor action is activated. It is confirmed that the device degradation is caused by the interface state generation from the extracted degradation rate and the dynamic transconductance measurement. The drain current degradation with the stress gate voltages shows that the device degradation of pMOSFETs is dominantly governed by the trapping of hot electrons, which are generated in drain avalanche hot carrier phenomena.r phenomena.

A Study About Design and Characteristic Improvement According to P-base Concentration Charge of 500 V Planar Power MOSFET (500 V 급 Planar Power MOSFET의 P 베이스 농도 변화에 따른 설계 및 특성 향상에 관한 연구)

  • Kim, Gwon Je;Kang, Ye Hwan;Kwon, Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.284-288
    • /
    • 2013
  • Power MOSFETs(Metal Oxide Semiconductor Field Effect Transistor) operate as energy control semiconductor switches. In order to reduce energy loss of the device during switch-on state, it is essential to increase its conductance. We have experimental results and explanations on the doping profile dependence of the electrical behavior of the vertical MOSFET. The device is fabricated as $8.25{\mu}m$ cell pitch and $4.25{\mu}m$ gate width. The performances of device with various p base doping concentration are compared at Vth from 1.77 V to 4.13 V. Also the effect of the cell structure on the on-resistance and breakdown voltage of the device are analyzed. The simulation results suggest that the device optimized for various applications can be further optimized at power device.

A Development of the Small Signal Analyzer for the Stationary Drift-Diffusion Equation (정상상태에서 드리프트-확산 방정식의 소신호 해석 프로그램 개발)

  • Lim, Woong-Jin;Lee, Eun-Gu;Kim, Tae-Han;Kim, Cheol-Seong
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.45-55
    • /
    • 1999
  • The small signal analyzer for the stationary drift-diffusion equation is developed. The slotboom variables of the potential, electron and hole concentrations for the response of applied small signal are defined and the stationary drift-diffusion equation is linearlized on DC operation point by $S^3A$ method. Frontal solver, which is used to solve the global matrix, progresses the accuracy of the solution in high frequency and minimizes the requirement of the memory. The simulations are executed on the structure of 3 dimensional N'P junction diode and 2 dimensional n-MOSFET to verify the proposed algorithm. The average relative errors of the conductance and the capacitance compared with MEDICI are about 26% and 0.67 for N'P junction diode and 7.75% and 2.24% for n-MOSFET. The simulation by the proposed algorithm can analyze the stationary drift-diffusion equation for applied small signal in high frequency region about 100GHz.

  • PDF

The Relation between Electrical Property of SOI MOSFET and Gate Oxide Interface Trap Density (SOI MOSFET의 전기적 특성과 게이트 산화막 계면준위 밀도의 관계)

  • Kim, Kwan-Su;Koo, Hyun-Mo;Lee, Woo-Hyun;Cho, Won-Ju;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.81-82
    • /
    • 2006
  • SOI(Silicon-On-Insulator) MOSFET의 전기적 특성에 미치는 게이트 산화막과 계면준위 밀도의 관계를 조사하였다. 결함이 발생하지 않는 얕은 소스/드레인 접합을 형성하기 위하여 급속열처리를 이용한 고상확산방법으로 제작한 SOI MOSFET 소자는 급속열처리 과정에서 계면준위가 증가하여 소자의 특성이 열화된다. 이를 개선하기 위하여 $H_2/N_2$ 분위기에서 후속 열처리 공정을 함으로써 소자의 특성이 향상됨을 볼 수 있었다. 이와같이 급속열처리 공정과 $H_2/H_2$ 분위기에서의 후속 열처리 공정이 소자 특성에 미치는 영향을 분석하기 위하여 소자 시뮬레이션을 이용하여 게이트 산화막과 채널 사이의 계면준위 밀도를 분석하였다. 그 결과, n-MOSFET의 경우에는 acceptor-type trap, p-MOSFET의 경우에는 donor-type trap density가 소자특성에 큰 영향을 미치는 것을 확인하였다.

  • PDF

Subthreshold characteristics of buried-channel pMOSFET device (매몰채널 pMOSFET소자의 서브쓰레쉬홀드 특성 고찰)

  • 서용진;장의구
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.708-714
    • /
    • 1995
  • We have discussed the buried-channel(BC) behavior through the subthreshold characteristics of submicron PMOSFET device fabricated with twin well CMOS process. In this paper, we have guessed the initial conditions of ion implantation using process simulation, obtained the subthreshold characteristics as a function of process parameter variation such as threshold adjusting ion implant dose($D_c$), channel length(L), gate oxide thickness($T_ox$) and junction depth of source/drain($X_j$) using device simulation. The buried channel behavior with these process prarameter variation were showed apparent difference. Also, the fabricated pMOSFET device having different channel length represented good S.S value and low leakage current with increasing drain voltage.

  • PDF

Electrical characteristics of the multi-result MOSFET (Multi result MOSFET의 에피층 농도에 따른 전기적 특성분석)

  • Kim, Hyoung-Woo;Kim, Sang-Cheol;S대, Kil-Soo;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.365-368
    • /
    • 2004
  • Charge compensation effects in multi-resurf structure make possible to obtain high breakdown volatage and low on-resistance in vertical MOSFET. In this paper, electrical characteristics of the vertical MOSFET with multi epitaxial layer is presented. Proposed device has n and p-pillar for obtaining the charge compensation effects and The doping concentration each pillar is varied from $5{\times}10^{14}\;to\;1{\times}10^{16}/cm^3$. The thickness of the proposed device also varied from $400{\mu}m\;to\;500{\mu}m$. Due to the charge compensation effects, 4500V of breakdown voltage can be obtained.

  • PDF

Study on the Characteristics of ALD HfO2 Thin Film by using the High Pressure H2 Annealing (고압의 HfO2 가스 열처리에 따른 원자층 증착 H2 박막의 특성 연구)

  • Ahn, Seung-Joon;Park, Chul-Geun;Ahn, Seong-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.287-291
    • /
    • 2005
  • We have investigated and tried to improve the characteristics of the thin $HfO_2$ layer deposited by ALD for fabricating a MOSFET device where the $HfO_2$ film worked as the gate dielectric. The substrate of MOSFET device is p-type (100) silicon wafer over which the $HfO_2$ dielectric layer with thickness of $5\~6\;nm$ has been deposited. Then the $HfO_2$ film was annealed with $1\~20\;atm\;H_2$ gas and subsequently aluminum electrodes was made so that the active area was $5{\times}10^{-5}\;cm^2$. We have found out that the drain current and transconductance increased by $5\~10\%$ when the $H_2$ gas pressure was 20 atm, which significantly contributed to the reliable operation of the high-density MOSFET devices.

A Study on the Design and Analysis of H.F Resonant Converter using power MOSFET (전력MOSFET를 이용한 고주파 공진형 DC-DC Converier의 설계와 해석에 관한 연구)

  • Cha, In-Su;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.510-514
    • /
    • 1989
  • This paper presents a new converter composed of a P.W.M controller and a resonant converter which operates at a constant frequency. This converter has relatively simple control circuits and high conversion efficiency. The optimum operating point corresponding to maximum efficient for the S.R.C and P.R.C operating above resonance is obtained.

  • PDF

Analysis of electrical characteristics for p-type silicon germanium metal-oxide semiconductor field-effect transistors (SiGe pMOSFET의 전기적 특성 분석)

  • Ko Suk-woong;Jung Hak-kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.303-307
    • /
    • 2006
  • In this paper, we have designed the p-type metal-oxide semiconductor field-effect transistor(pMOSFET) for SiGe devices with gate lengths of $0.9{\mu}m$ and $0.1{\mu}m$using the TCAD simulators. The electrical characteristics of devices have been investigated over the temperatures of 300 and 77K. We have used the two carrier transfer models(hydrodynamic model and drift-diffusion model). We how that the drain current is higher in the hydrodynamic model than the drift-diffusion model. When the gate length is $0.9{\mu}m$, the threshold voltage shows -0.97V and -1.15V for 300K and 77K, respectively. The threshold voltage is, however, nearly same at $0.1{\mu}m$ for 300K and 77K.