• 제목/요약/키워드: p-JNK

검색결과 656건 처리시간 0.03초

초대 배양한 닭 간세포 증식에 대한 estradiol-$17{\beta}$의 효과 (Effect of estradiol-$17{\beta}$ on proliferation in primary cultured chicken hepatocytes)

  • 백결;장주원
    • 한국동물위생학회지
    • /
    • 제31권4호
    • /
    • pp.457-463
    • /
    • 2008
  • The sex steroid hormone estradiol-$17{\beta}(E_2)$ mediate their biological effects on development, differentiation and maintenance of reproductive tract and other target tissue through gene regulation by nuclear steroid receptors. Although the importance of $E_2$ in many physiological process has been reported, but little is known about the effects of $E_2$ on primary cultured chicken hepatocyte. therefore, in the present study, we have examined the effect of $E_2$ on cell proliferation and it's related signal cascades. $E_2$ increase $[^3H]$-thymidine incorporation in time-(${\leq}8hr$) and dose-($10^{-10}M$)dependent manner and treatment of $E_2$ increased the phosphorylation of p44/43 MAPKs(p44/42 mitogen-activated protein kinase) and JNK(c-Jun N-terminal kinase) in a time dependent manner. In addition, PD98059(p44/42 blocker, $10^{-5}M$), SP600125(JNK blocker, $10^{-6}M$) blocked the estrogen-induced increase in $[^3H]$-thymidine incorporation. In conclusion, $E_2$ stimulates the proliferation of primary cultured chicken hepatocytes and this action is mediated by p44/42 MAPKs and JNK signal transduction pathway.

Immune-enhancing Activity of Paeonia lactiflora through TLR4-dependent Activation of p38, JNK, and ERK1/2 RAW264.7 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2023년도 임시총회 및 춘계학술대회
    • /
    • pp.47-47
    • /
    • 2023
  • Paeonia lactiflora roots (PLR) are a medicinal plant widely used for treating inflammatory diseases. However, PLR has been recently reported to increase the production of proinflammatory mediators and activates phagocytosis in macrophages. Thus, in this study, we tried to verify the macrophage activation of PLR and elucidate its mechanism of action. PLR upregulated the production of proinflammatory mediators and activated phagocytosis in RAW264.7 cells. However, these effects were reversed by inhibition of TLR2/4. In addition, the inhibition of p38, JNK, and ERK1/2 reduced the PLR-mediated production of proinflammatory mediators, and the PLR-mediated activation of p38, JNK, and ERK1/2 was blocked by the TLR4 inhibition. These findings indicate that PLR may activate macrophages through TLR4-dependent activation of p38, JNK, and ERK1/2. These indicate that PLR has immunostimulatory activity. Thus, it is believed that PLR can be used as a functional food agent that enhances the immune system.

  • PDF

YJI-7 Suppresses ROS Production and Expression of Inflammatory Mediators via Modulation of p38MAPK and JNK Signaling in RAW 264.7 Macrophages

  • Oh, Hye Jin;Magar, Til Bahadur Thapa;Pun, Nirmala Tilija;Lee, Yunji;Kim, Eun Hye;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.191-200
    • /
    • 2018
  • Chalcone, (2E)-1,3-Diphenylprop-2-en-1-one, and its synthetic derivatives are known to possess anti-oxidative and anti-inflammatory properties. In the present study, we prepared a novel synthetic chalcone compound, (E)-1-(4-hydroxyphenyl)-3-(2-(trifluoromethoxy)phenyl)prop-2-en-1-one name (YJI-7), and investigated its inhibitory effects on endotoxin-stimulated production of reactive oxygen species (ROS) and expression of inflammatory mediators in macrophages. We demonstrated that treatment of RAW 264.7 macrophages with YJI-7 significantly suppressed lipopolysaccharide (LPS)-stimulated ROS production. We also found that YJI-7 substantially decreased NADPH oxidase activity stimulated by LPS, indicating that YJI-7 regulates ROS production via modulation of NADPH oxidase in macrophages. Furthermore, YJI-7 strongly inhibited the expression of a number of inflammatory mediators in a gene-selective manner, suggesting that YJI-7 possesses potent anti-inflammatory properties, as well as anti-oxidative activity. In continuing experiments to investigate the mechanisms that could underlie such biological effects, we revealed that YJI-7 suppressed phosphorylation of p38MAPK and JNK stimulated by LPS, whereas no significant effect on ERK was observed. Furthermore, LPS-stimulated production of ROS, activation of NADPH oxidase and expression of inflammatory mediators were markedly suppressed by treatment with selective inhibitor of p38MAPK (SB203580) and JNK (SP600125). Taken together, these results demonstrated that YJI-7, a novel synthetic chalcone derivative, suppressed LPS-stimulated ROS production via modulation of NADPH oxidase and diminished expression of inflammatory mediators, at least in part, via down-regulation of p38MAPK and JNK signaling in macrophages.

고삼(苦蔘)에탄올 추출물이 $NF{\kappa}B$ 및 JNK, p38 조절을 통한 알레르기성 염증에 미치는 영향 (The Effect of Allergic Inflamation by Sophora Flavescens Aiton Extract Ion Through Inhibition of the $NF{\kappa}B$, JNK and p38 Pathway)

  • 이지영;박성식
    • 사상체질의학회지
    • /
    • 제21권1호
    • /
    • pp.139-149
    • /
    • 2009
  • 1. Objectives The roots of Sophora flavescens Aiton (SFA) are widely used as a herbal remedy for allergic inflammation. In this study, we invested the effect of SFA on passive cutaneous anaphylaxis reaction and histamin releas and we demonstrated that SFA suppressed the production of pro-inflammatory cytokines, such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin- 6 (IL-6), and interleukin -8 (IL-8), through inhibition of the $NF{\kappa}B$, JNK and p38 pathway in the human mast cell line, HMC-1. 2. Methods To accomplish this, we invested passive cutaneous anaphylaxis reaction and histamin release at an animal experiment. In addition, we investigated the effect of SFA on the production of inflammation-related cytokines in HMC-1 cells that were co-treated with PMA and A23187, which can induce production of pro-inflammatory cytokines. 3. Results and Conclusions SFA induced passive cutaneous anaphylaxis reaction and histamin releas and supressed the expression of TNF-${\alpha}$, IL-6, and IL-8. In addition, the protein levels of TNF-${\alpha}$ were also decreased by SFA treatment. Furthermore, SFA inhibited the nuclear translocation of nuclear factor $NF{\kappa}B$ through inhibition of the phosphorylation and degradation of $I{\kappa}B-{\alpha}$, which is an inhibitor of $NF{\kappa}B$. Moreover, SFA also inhibited induction of MAPKs (JNK, p38) and $NF{\kappa}B$ promoter-mediated luciferase activity. Taken together, these results suggest that SFA could be used as a treatment for mast cell-derived allergic inflammatory diseases.

  • PDF

Effect of Mild Hypothermia on the Mitogen Activated Protein Kinases in Experimental Stroke

  • Han, Hyung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권4호
    • /
    • pp.187-194
    • /
    • 2004
  • Middle cerebral artery occlusion (MCAO) results in cell death by activation of complex signal pathways for cell death and survival. Hypothermia is a robust neuroprotectant, and its effect has often been attributed to various mechanisms, but it is not yet clear. Upstream from the cell death promoters and executioners are several enzymes that may activate several transcription factors involved in cell death and survival. In this study, we immunohistochemically examined the phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase during early period of the ischemic injury, following 2 hours (h) of transient MCAO. Increased phosphorylation of ERK and p38 was observed in the vessels at 3 h, neuron-like cells at 6 and 12 h and glia-like cells at 12 h. Activation of JNK was not remarkable, and a few cells showed active JNK following ischemia. Phosphorylation of Elk-1, a transcription factor, was reduced by ischemic insult. Hypothermia attenuated the activation of ERK, p38 and JNK, and inhibited reduction of Elk-1. These data suggest that signals via different MAPK family members converge on the cell damage process and hypothermia protects the brain by interfering with these pathways.

청피의 항염증효과 (Effects of Citri Reticulatae Viride Pericarpium on 4-Hydroxynonenal-Induced Inflammation in PC12 Cells)

  • 예영준;김연섭;강미숙
    • 한방비만학회지
    • /
    • 제16권2호
    • /
    • pp.79-84
    • /
    • 2016
  • Objectives: The purpose of this study was to observe the effects of Citri Reticulatae Viride Pericarpium (CP) on 4-Hydroxynonenal (4-HNE)-induced inflammation in PC12 cells. Methods: 4-HNE was treated in PC12 cell to cause inflammatory response, and then treated with CP water extract at 25, 50, and $100{\mu}g/ml$. The phosphorylation of Jun N-terminal kinase (JNK) and the expression of $NF-{\kappa}B$ in PC12 cells were determined by Western blot, respectively. Results: The phosphorylation of JNK was significantly decreased in 4-HNE-stimulated PC12 cell by the treatment of CP extract at $25{\mu}g/ml$. The 4-HNE-induced expression of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) p65 in nuclear of the cells was significantly decreased in PC12 cell by treatment with CP extract at 25, 50, and $100{\mu}g/ml$. Conclusions: These results suggest that CP water extract has an anti-inflammatory activity through suppressing the JNK and $NF-{\kappa}B$ activation.

Sec-O-glucosylhamaudol mitigates inflammatory processes and autophagy via p38/JNK MAPK signaling in a rat neuropathic pain model

  • Oh, Seon Hee;Kim, Suk Whee;Kim, Dong Joon;Kim, Sang Hun;Lim, Kyung Joon;Lee, Kichang;Jung, Ki Tae
    • The Korean Journal of Pain
    • /
    • 제34권4호
    • /
    • pp.405-416
    • /
    • 2021
  • Background: This study investigated the effect of intrathecal Sec-O-glucosylhamaudol (SOG) on the p38/c-Jun N-terminal kinase (JNK) signaling pathways, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-related inflammatory responses, and autophagy in a spinal nerve ligation (SNL)-induced neuropathic pain model. Methods: The continuous administration of intrathecal SOG via an osmotic pump was performed on male Sprague-Dawley rats (n = 50) with SNL-induced neuropathic pain. Rats were randomized into four groups after the 7th day following SNL and treated for 2 weeks as follows (each n = 10): Group S, sham-operated; Group D, 70% dimethylsulfoxide; Group SOG96, SOG at 96 ㎍/day; and Group SOG192, SOG at 192 ㎍/day. The paw withdrawal threshold (PWT) test was performed to assess neuropathic pain. Western blotting of the spinal cord (L5) was performed to measure changes in the expression of signaling pathway components, cytokines, and autophagy. Additional studies with naloxone challenge (n = 10) and cells were carried out to evaluate the potential mechanisms underlying the effects of SOG. Results: Continuous intrathecal SOG administration increased the PWT with p38/JNK mitogen-activated protein kinase (MAPK) pathway and NF-κB signaling pathway inhibition, which induced a reduction in proinflammatory cytokines with the concomitant downregulation of autophagy. Conclusions: SOG alleviates mechanical allodynia, and its mechanism is thought to be related to the regulation of p38/JNK MAPK and NF-κB signaling pathways, associated with autophagy during neuroinflammatory processes after SNL.

마치현 에틸아세테이트 분획물의 뇌세포 보호효과 (Neuroprotective Effect of Ethyl Acetate Fraction of Portulaca oleracea L.)

  • 임남경;정길생
    • 생약학회지
    • /
    • 제44권4호
    • /
    • pp.379-383
    • /
    • 2013
  • Portulaca oleracea L. is known to have many biological benefits such as anti-oxidant, anti-inflammatory, anti-allergic and anti-tumor. The objective of this study is to explore the neuroprotective effect of P. oleracea L. against glutamate-induced oxidative stress in mouse hippocampal HT22 cells. P. oleracea L. 70% ethanol extract and solvent fractions have the potent neroprotective effects on glutamate-induced nerotoxicity by induced the expression of heme oxygenase (HO)-1 in HT22 cells. Especially, ethyl acetate fraction showed higher protective effect. In HT22 cell, P. oleracea L. treatment with ERK inhibitor (PD98059) and c-JUN N-terminal kinase (JNK) inhibitor (SP600125) reduced P. oleracea L. ethyl acetate fraction induced HO-1 expression and P. oleracea L. ethyl acetate fraction also increased ERK and JNK phosphorylation. Furthermore, we found that treatment of P. oleracea L. caused the nuclear accumulation of Nrf2. In conclusion, the ethyl acetate fraction of 70% ethanol extract of P. oleracea L. significantly protect glutamate-induced oxidative damage by induction of HO-1 via Nrf2, ERK and JNK pathway in mouse hippocampal HT22. Taken together these finding suggest that P. oleracea L. ethyl acetate fraction is good source for taking active compounds and may be a potential therapeutic agent for brain disorder that induced by oxidative stress and neuronal damage.

Shikonin Induces Apoptotic Cell Death via Regulation of p53 and Nrf2 in AGS Human Stomach Carcinoma Cells

  • Ko, Hyeonseok;Kim, Sun-Joong;Shim, So Hee;Chang, HyoIhl;Ha, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제24권5호
    • /
    • pp.501-509
    • /
    • 2016
  • Shikonin, which derives from Lithospermum erythrorhizon, has been traditionally used against a variety of diseases, including cancer, in Eastern Asia. Here we determined that shikonin inhibits proliferation of gastric cancer cells by inducing apoptosis. Shikonin's biological activity was validated by observing cell viability, caspase 3 activity, reactive oxygen species (ROS) generation, and apoptotic marker expressions in AGS stomach cancer cells. The concentration range of shikonin was 35-250 nM with the incubation time of 6 h. Protein levels of Nrf2 and p53 were evaluated by western blotting and confirmed by real-time PCR. Our results revealed that shikonin induced the generation of ROS as well as caspase 3-dependent apoptosis. c-Jun-N-terminal kinases (JNK) activity was significantly elevated in shikonin-treated cells, thereby linking JNK to apoptosis. Furthermore, our results revealed that shikonin induced p53 expression but repressed Nrf2 expression. Moreover, our results suggested that there may be a co-regulation between p53 and Nrf2, in which transfection with siNrf2 induced the p53 expression. We demonstrated for the first time that shikonin activated cell apoptosis in AGS cells via caspase 3- and JNK-dependent pathways, as well as through the p53-Nrf2 mediated signal pathway. Our study validates in partly the contribution of shikonin as a new therapeutic approaches/agent for cancer chemotherapy.

소목(蘇木) 물추출물의 G2/M기 정지를 통한 U937세포의 성장억제 효과 (Caesalpinia sappan L. Induces G2/M Phase Cell Cycle Arrest in Human Lymphoma U937 Cells)

  • 전병제;주성민;양현모;김보현;김원신;전병훈
    • 동의생리병리학회지
    • /
    • 제24권1호
    • /
    • pp.55-60
    • /
    • 2010
  • Caesalpinia sappan L. (C. sappan) has long been used in traditional medicine as an emmenagogue, hemostatic and anti-inflammatory agent. The present study investigated the effects of water extract of C. sappan in human lymphoma U937 cells. The proliferation of U937 cells was decreased by C. sappan in a dose-dependently manner. Anti-proliferative effect of C. sappan on U937 cells was associated with G2/M phase arrest, which was mediated by regulating the expression of p21 protein. Moreover, phosphorylation of JNK and p38 was increased by C. sappan. Blockade of JNK and p38 was significantly inhibited C. sappan-induced G2/M phase arrest. Taken together, these results suggest that Anti-proliferative effect of C. sappan on U937 is assocated with G2/M phase cell cycle arrest by expression of p21 protein and, JNK and p38 activation.