• Title/Summary/Keyword: p-Akt

Search Result 445, Processing Time 0.026 seconds

PKC inhibitors RO 31-8220 and Gö 6983 enhance epinephrine-induced platelet aggregation in catecholamine hypo-responsive platelets by enhancing Akt phosphorylation

  • Kim, Sun-Young;Kim, Se-Woon;Kim, Jeong-Mi;Jho, Eek-Hoon;Park, Seon-Yang;Oh, Do-Yeun;Yun-Choi, Hye-Sook
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.140-145
    • /
    • 2011
  • Impaired responsiveness of platelets to epinephrine (epi) and other catecholamines (CA) has been reported in approximately 20% of the healthy Korean and Japanese populations. In the present study, platelet aggregation induced by epi was potentiated by RO 31-8220 (RO) or G$\ddot{o}$ 6983 (G$\ddot{o}$). Phosphorylated Akt (p-Akt) was very low in epi-stimulated PRP from CA-hypo- responders (CA-HY), whereas it was detected in those from CA-good responders (CA-GR). RO and G$\ddot{o}$ increased p-Akt, one of the major downstream effectors of phosphoinositol-3 kinase (PI3K), in epi-stimulated PRP from both groups. Wortmannin, a PI3K inhibitor, attenuated the RO or G$\ddot{o}$-induced potentiation of p-Akt in epi-stimulated PRP, suggesting positive effects for RO and G$\ddot{o}$ on PI3K. $TXA_2$ formation was increased by the addition of either RO or G$\ddot{o}$ in epi-stimulated platelets. The present data also suggest that impaired Akt phosphorylation may be responsible for epinephrine hypo-responsiveness of platelets.

Baicalin Induces Apoptosis in Leukemia HL-60/ADR Cells via Possible Down-regulation of the PI3K/Akt Signaling Pathway

  • Zheng, Jing;Hu, Jian-Da;Chen, Ying-Yu;Chen, Bu-Yuan;Huang, Yi;Zheng, Zhi Hong;Liu, Ting-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1119-1124
    • /
    • 2012
  • Background: The effect and possible mechanism of traditional Chinese medicine, baicalin, on the PI3K/Akt signaling pathway in drug-resistant human myeloid leukemia HL-60/ADR cells have been investigated in this current study. Methods: HL-60/ADR cells were treated by 20, 40, $80\;{\mu}mol/L$ baicalin followed by cell cycle analysis at 24h. The mRNA expression level of the apoptosis related gene, Bcl-2 and bad, were measured by RT-PCR on cells treated with $80\;{\mu}mol/L$ baicalin at 12, 24 and 48hr. Western blot was performed to detect the changes in the expression of the proteins related to HL-60/ADR cell apoptosis and the signaling pathway before and after baicalin treatment, including Bcl-2, PARP, Bad, Caspase 3, Akt, p-Akt, NF-${\kappa}B$, p-NF-${\kappa}B$, mTOR and p-mTOR. Results: Sub-G1 peak of HL-60/ADR cells appeared 24 h after $20\;{\mu}mol/L$ baicalin treatment, and the ratio increased as baicalin concentration increased. Cell cycle analysis showed 44.9% G0/G1 phase cells 24 h after baicalin treatment compared to 39.6% in the control group. Cells treated with $80\;{\mu}mol/L$ baicalin displayed a trend in decreasing of Bcl-2 mRNA expression over time. Expression level of the Bcl-2 and PARP proteins decreased significantly while that of the PARP, Caspase-3, and Bad proteins gradually increased. No significant difference in Akt expression was observed between treated and the control groups. However, the expression levels of p-Akt, NF-${\kappa}B$, p-NF-${\kappa}B$, mTOR and p-mTOR decreased significantly in a time-dependent manner. Conclusions: We conclude that baicalin may induce HL-60/ADR cell apoptosis through the PI3K/AKT signaling pathway.

Ginsenoside Rg1 Induces Autophagy in Colorectal Cancer through Inhibition of the Akt/mTOR/p70S6K Pathway

  • Ruiqi Liu;Bin Zhang;Shuting Zou;Li Cui;Lin, Lin;Lingchang Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.774-782
    • /
    • 2024
  • This study aimed to elucidate the anti-colon cancer mechanism of ginsenoside Rg1 in vitro and in vivo. Cell viability rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium assay. The inhibitory effect of ginsenoside Rg1 against CT26 cell proliferation gradually increased with increasing concentration. The in vivo experiments also demonstrated an antitumor effect. The monodansylcadaverine (MDC), transmission electron microscopy (TEM), and expression of autophagy marker proteins confirmed that ginsenoside Rg1 induced autophagy in vitro. Ginsenoside Rg1 induced autophagy death of CT26 cells, but this effect could be diminished by autophagy inhibitor (3-methyladenine, 3-MA). Additionally, in a xenograft model, immunohistochemical analysis of tumor tissues showed that the LC3 and Beclin-1 proteins were highly expressed in the tumors from the ginsenoside Rg1-treated nude mice, confirming that ginsenoside Rg1 also induced autophagy in vivo. Furthermoer, both in vivo and in vitro, the protein expressions of p-Akt, p-mTOR, and p-p70S6K were inhibited by ginsenoside Rg1, which was verified by Akt inhibitors. These results indicated that the mechanism of ginsenoside Rg1 against colon cancer was associated with autophagy through inhibition of the Akt/mTOR/p70S6K signaling pathway.

Lincomycin induces melanogenesis through the activation of MITF via p38 MAPK, AKT, and PKA signaling pathways

  • Lee, Min Suk;Chung, You Chul;Moon, Seung-Hyun;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.323-331
    • /
    • 2021
  • Lincomycin is a lincosamide antibiotic isolated from the actinomycete Streptomyces lincolnensis. Moreover, it has been found to be effective against infections caused by Staphylococcus, Streptococcus, and Bacteroides fragillis. To identify the melanin-inducing properties of lincomycin, we used B16F10 melanoma cells in this study. The melanin content and intracellular tyrosinase activity in the cells were increased by lincomycin, without any cytotoxicity. Western blot analysis indicated that the protein expressions of tyrosinase, tyrosinase related protein 1 (TRP1) and TRP2 increased after lincomycin treatment. In addition, lincomycin enhanced the expression of master transcription regulator of melanogenesis, a microphthalmia-associated transcription factor (MITF). Lincomycin also increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and decreased the AKT phosphorylation. Moreover, the activation of tyrosinase activity by lincomycin was inhibited by the treatment with SB203580, which is p38 inhibitor. Furthermore, we also found that lincomycin-induced tyrosinase expression was reduced by H-89, a specific protein kinase A (PKA) inhibitor. These results indicate that lincomycin stimulate melanogenesis via MITF activation via p38 MAPK, AKT, and PKA signal pathways. Thus, lincomycin can potentially be used for treatment of hypopigmentation disorders.

MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway

  • Long, Zi-Wen;Wu, Jiang-Hong;Hong, Cai;Wang, Ya-Nong;Zhou, Ye
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.532-544
    • /
    • 2018
  • Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR-374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.

JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

  • Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.345-352
    • /
    • 2017
  • Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-$1{\beta}$ without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the $NF-{\kappa}B$ transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the $NF-{\kappa}B$ pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the $NF-{\kappa}B$ and AP-1 pathways, respectively.

Gallotannin regulates apoptosis and COX-2 expression via Akt and p38kinase pathway in human lung cancer cell line, A549

  • Yu, Seon-Mi;Gweon, Eun-Jeong;Chung, Ki-Wha;Kim, Kwang-Hoon;Cho, Hong-Sik;Kim, Song-Ja
    • Animal cells and systems
    • /
    • v.16 no.5
    • /
    • pp.366-375
    • /
    • 2012
  • Gallotannin (GT) is derived from plant poly phenol and is associated with biological actions in a wide range of cells. In this study, we evaluated the effect of GTon apoptosis and cyclooxygenase-2 (COX-2) expression and attempted to shed light on the mechanism of action in A549 human lung carcinoma cells. We found that GT dramatically induced apoptosis as demonstrated by expression of p53 and active caspase-3 via western blot analysis and fragmented DNA as detected by DNA fragmentation and DAPI staining. We also observed that GT significantly causes COX-2 expression in a dose-dependent manner determined by western blot analysis. Phosphorylation of Akt and p38 was considerably increased by GT in A549 human lung carcinoma cells. Inhibition of Akt and p38kinase with LY294002 or SB203580 suppressed GT-induced apoptosis and COX-2 expression. Furthermore, we have shown that prevention of COX-2 with NS398 or indomethacin does not any effects on apoptosis induced by GT. Taken together, our present results suggest that GT regulates apoptosis and COX-2 expression through Akt and p38kinase pathway in A549, human lung carcinoma cells.

Induction of Autophagy by Rosa acicularis Leaves Extracts in RAW264.7 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.45-45
    • /
    • 2023
  • Autophagy contributes to enhancing the immune system (innate and adaptive immune system) against foreign pathogens. Autophagy of macrophages is used as a major indicator for developing vaccine adjuvants to increase the adaptive immune response. In this study, RAL increased the production of immunostimulatory mediators and phagocytotic activity in RAW264.7 cells. RAL increased p62/SQSTM1 expression. Inhibition of TLR4, JNK, and PI3K/AKT blocked RAL-mediated increase of p62/SQSTM1. RAL activated JNK and PI3K/AKT signaling. RAL-mediated activation of JNK and PI3K/AKT signaling was reversed by TLR4 inhibition. Taken together, it is believed that RAL-mediated autophagy may be dependent on activating via TLR4-dependent activation of JNK and PI3K/AKT signaling in macrophages.

  • PDF

PI(3,4,5)P3 regulates the interaction between Akt and B23 in the nucleus

  • Kwon, Il-Sun;Lee, Kyung-Hoon;Choi, Joung-Woo;Ahn, Jee-Yin
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.127-132
    • /
    • 2010
  • Phosphatidylinositol (3,4,5)-triphosphate ($PIP_3$) is a lipid second messenger that employs a wide range of downstream effector proteins for the regulation of cellular processes, including cell survival, polarization and proliferation. One of the most well characterized cytoplasmic targets of $PIP_3$, serine/threonine protein kinase B (PKB)/Akt, promotes cell survival by directly interacting with nucleophosmin (NPM)/B23, the nuclear target of $PIP_3$. Here, we report that nuclear $PIP_3$ competes with Akt to preferentially bind B23 in the nucleoplasm. Mutation of Arg23 and Arg25 in the PH domain of Akt prevents binding to $PIP_3$, but does not disrupt the Akt/B23 interaction. However, treatment with phosphatases PTEN or SHIP abrogates the association between Akt and B23, indicating that nuclear $PIP_3$ regulates the Akt/B23 interaction by controlling the concentration and subcellular dynamics of these two proteins.

Direct Interaction Between Akt1 and Gcn5 and its Plausible Function on Hox Gene Expression in Mouse Embryonic Fibroblast Cells

  • Oh, Ji Hoon;Lee, Youra;Kong, Kyoung-Ah;Kim, Myoung Hee
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.266-269
    • /
    • 2013
  • Hox genes encode transcription factors important for anterior-posterior body patterning at early stages of embryonic development. However, the precise mechanisms by which signal pathways are stimulated to regulate Hox gene expression are not clear. In the previous study, protein kinase B alpha (Akt1) has been identified as a putative upstream regulator of Hox genes, and Akt1 has shown to regulate Gcn5, a prototypical histone acetyltransferase (HAT), in a negative way in mouse embryonic fibroblast (MEF) cells. Since the activity of HAT such as the CBP/p300, and PCAF (a Gcn5 homolog), was down-regulated by Akt through a phosphorylation at the Akt consensus substrate motif (RXRXXS/T), the amino acid sequence of Gcn5 protein was analyzed. Mouse Gcn5 contains an Akt consensus substrate motif as RQRSQS sequence while human Gcn5 does not have it. In order to see whether Akt1 directly binds to Gcn5, immunoprecipitation with anti-Akt1 antibody was carried out in wild-type (WT) mouse embryonic fibroblast (MEF) cells, and then western blot analysis was performed with anti-Akt1 and anti-Gcn5 antibodies. Gcn5 protein was detected in the Akt1 immunoprecipitated samples of MEFs. This result demonstrates that Akt1 directly binds to Gcn5, which might have contributed the down regulation of the 5' Hoxc gene expressions in wild type MEF cells.