• Title/Summary/Keyword: p-38 mitogen-activated protein kinase

Search Result 399, Processing Time 0.026 seconds

Bee Venom Within Liposomes Synergistically Inhibit Atopic Dermatitis in Mice

  • Kim, Joan;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.39 no.1
    • /
    • pp.40-48
    • /
    • 2022
  • Background: This study was performed to determine the effects of liposome-encapsulated bee venom (BV) treatment of inflammatory factors in atopic dermatitis (AD) compared with BV treatment. Methods: AD was induced by phthalic anhydride in mice and the effects of BV liposomes were measured. Using Leica Application Suite, thickened epidermis and dermis were measured after BV liposome treatment (0.05 and 0.1 ㎍/mL). The number of stained mast cells and the concentration of immunoglobulin (Ig)E were measured. Serum IgE concentration was analyzed using an enzyme-linked immunosorbent assay. The serum concentrations of interleukin (IL)-1, IL-4, and IL-6 inflammatory cytokines were measured. The levels of messenger ribonucleic acid expression of proinflammatory cytokines and chemokines were measured using reverse transcription polymerase chain reaction. Inhibition of mitogen-activated protein kinase activation, was analyzed on western blot. To measure the transcriptional activity (NF-κB inhibition by BV liposomes), western blots (p65, p-IκB, p50, and IκB) were also performed. Results: The weight of lymph nodes, serum IgE concentrations, morphological changes in the skins from the backs of the mice, and mast cell numbers in inflamed tissues were noticeably lower in the BV liposome treatment group compared with the BV treatment group. The concentrations of pro-inflammatory cytokines (IL-1, IL-4, IL-6) and chemokines (TSLP, CCL22) were also reduced. Activation of mitogen-activated protein kinase (p-ERK and p-p38), and transcriptional activity (p65, p-IκB, p50, and IκB) was strongly suppressed in the BV liposome group. Conclusion: BV liposomes may have a better therapeutic effect than BV for the treatment of AD.

Canavalia gladiata regulates the immune responses of macrophages differently depending on the extraction method

  • Lee, Ha-Nul;Kim, Young-Min;Jang, Ah-Ra;Kim, Young Ran;Park, Jong-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.622-626
    • /
    • 2020
  • Recent studies have suggested that Canavalia gladiate, a dietary food and traditional folk medicine, has promising pharmaceutical potential, but the effects have mostly been demonstrated using its organo-soluble extract. To date, its immunomodulatory effect depending on the extraction method is unclear. Here, the immune responses of macrophages to C. gladiate and the underlying mechanisms were studied. C. gladiate hot water extract (CGW) induced cytokine production in bone marrow-derived macrophages (BMDMs) in a dose-dependent manner, whereas its ethanolic extract (CGE) did not. Immunoblotting analysis also showed that CGW activated nuclear factor (NF)-κB and mitogen-activated protein kinases (MAPKs). Moreover, an inhibitor assay revealed the involvement of NF-κB, p38, and JNK, but not ERK, in CGW-induced cytokine production. CGE inhibited lipopolysaccharide-stimulated production of pro-inflammatory cytokines and activation of NF-κB and MAPKs in BMDMs. The results suggest that C. gladiate regulates the immune responses of macrophages differently depending on the extraction method.

A77 1726 Inhibit NO-induced Apoptosis via PI-3K/AKT Signaling Pathway in Rabbit Articular Chondrocyte

  • Choi, In-Kyou;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • Leflunomide is an immunomodulatory agent used for the treatment of rheumatoid arthritis (RA). Leflunomide known as a regulator of iNOS synthesis which largely decreases NO production in diverse cell type. However, the effect of leflunomide on chondrocyte is still poorly understood. In our previous studies, we have shown that direct production of Nitric oxide (NO) by treating chondrocytes with NO donor, sodium nitroprusside (SNP), causes apoptosis via p38 mitogen-activated protein kinase in association with elevation of p53 protein level, caspase-3 activation. In this study, we characterized the molecular mechanism by which A77 1726 inhibit apoptosis. We found that A77 1726 inhibit NO-induced apoptosis as determined by MTT (Thiazolyl Blue Tetrazolium Bromide) assay and DNA fragmentation. The inhibition of apoptosis by A77 1726 was accompanied by increased PI-3 kinase and AKT activities. So, inhibition of phosphatidylinositol (PI)-3kinase with LY294002 rescued apoptosis. Triciribine, the specific inhibitor of AKT, also abolished anti-apoptotic effect. Our results indicate that A77 1726, the active metabolite of leflunomide, mediates NO-induced apoptosis in chondrocytes by modulating up-regulation of PI-3 kinase and AKT.

  • PDF

KCl Mediates $K^+$ Channel-Activated Mitogen-Activated Protein Kinases Signaling in Wound Healing

  • Shim, Jung Hee;Lim, Jong Woo;Kim, Byeong Kyu;Park, Soo Jin;Kim, Suk Wha;Choi, Tae Hyun
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Background Wound healing is an interaction of a complex signaling cascade of cellular events, including inflammation, proliferation, and maturation. $K^+$ channels modulate the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we investigated whether $K^+$ channel-activated MAPK signaling directs collagen synthesis and angiogenesis in wound healing. Methods The human skin fibroblast HS27 cell line was used to examine cell viability and collagen synthesis after potassium chloride (KCl) treatment by Cell Counting Kit-8 (CCK-8) and western blotting. To investigate whether $K^+$ ion channels function upstream of MAPK signaling, thus affecting collagen synthesis and angiogenesis, we examined alteration of MAPK expression after treatment with KCl (channel inhibitor), NS1619 (channel activator), or kinase inhibitors. To research the effect of KCl on angiogenesis, angiogenesis-related proteins such as thrombospondin 1 (TSP1), anti-angiogenic factor, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), pro-angiogenic factor were assayed by western blot. Results The viability of HS27 cells was not affected by 25 mM KCl. Collagen synthesis increased dependent on time and concentration of KCl exposure. The phosphorylations of MAPK proteins such as extracellular-signal-regulated kinase (ERK) and p38 increased about 2.5-3 fold in the KCl treatment cells and were inhibited by treatment of NS1619. TSP1 expression increased by 100%, bFGF expression decreased by 40%, and there is no significant differences in the VEGF level by KCl treatment, TSP1 was inhibited by NS1619 or kinase inhibitors. Conclusions Our results suggest that KCl may function as a therapeutic agent for wound healing in the skin through MAPK signaling mediated by the $K^+$ ion channel.

A study on the regulatory effect of p-38 MAP kinase on nitric oxide and interleukin-6 in osteoblasts (조골세포에시 p-38 MAP kinase의 nitric oxide 및 interleukin-6 생성조절에 관한 연구)

  • Lee, Kyung-Won;Lee, Doe-Hoon;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.199-210
    • /
    • 2003
  • Tooth movement is the result of bone metabolism in the periodontium, where various cytokines take important roles. Interleukin-6(II-6) and nitrous oxide (NO) were reported to be secreted from osteoblasts in the process of bone resorption. The mechanism of the process has not been clearly understood, but the activation of mitogen-activated protein kinase (MAPK) was known to be an important process in the release of the inflammatory cytotines in macrophages. In this regard, to prove the role of MAPK in the release of IL-6 and NO in MC3T3E-1 osteoblasts, Northern blot analysis, Western blot analysis and immune complex kinase assay were used. As a result, the treatment of MC3T3E-1 osteoblast cultures with combined $interferon-\gamma(IFN-\gamma)$, lipopolysaccharide (LPS) and tumor necrosis $factor-\alpha(TNF-\alpha)$ induces expressions of inducible nitric oxide synthase (iNOS) and IL-6, resulting in sustained releases of large amounts of NO and IL-6. However, $IFN-\gamma,\;LPS,\;and\;TNF-\alpha$ individually induce a non-detectable or small amount of NO and IL-6 in MC3T3E-1 osteoblasts. The role of MAPK activation in the early intracellular signal transduction involved in iNOS and IL-6 transcription in the combined agents-stimulated osteoblasts has been investigated. The p38 MAPK pathway is specifically involved in the combined agents-induced NO and IL-6 release, since NO and IL-6 release in the presence of a specific inhibitor of p38 MAPK, 4-(4-fluorophenyl)-2-(4-metylsulfinylphenyl)-5-(4-metylsulfinylphenyl)-5-(4-pyridyl)imidazole) (SB203580), were significantly diminished. In contrast, PD98059, a specific inhibitor of MEK1, had no effect on NO and IL-6 release. Northern blot analysis showed that the p3a MAPK pathway controlled the iNOS and IL-6 transcription level. These data suggest that p38 MAPK play an important role in the secretion of NO and IL-6 in $LPS/IFN{\gamma}-or\;TNF-\gamma-treated\;MC3T3E-1$ osteoblasts.

Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection

  • Singh, Lovedeep;Kulshrestha, Ritu;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.225-234
    • /
    • 2018
  • Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of $K_{ATP}$ channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.

Lisophosphatidic Acid Inhibits Melanocyte Proliferation via Cell Cycle Arrest

  • Kim, Dong-Seok;Park, Seo-Hyoung;Kim, Sung-Eun;Kwon, Sun-Bang;Park, Eun-Sang;Youn, Sang-Woong;Park, Kyoung-Chan
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1055-1060
    • /
    • 2003
  • Lysophosphatidic acid (LPA) is a well-known mitogen in various cell types. However, we found that LPA inhibits melanocyte proliferation. Thus, we further investigated the possible signaling pathways involved in melanocyte growth inhibition. We first examined the regulation of the three major subfamilies of mitogen-activated protein (MAP) kinases and of the Akt pathway by LPA. The activations of extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) were observed in concert with the inhibition of melanocyte proliferation by LPA, whereas p38 MAP kinase and Akt were not influenced by LPA. However, the specific inhibition of the ERK or JNK pathways by PD98059 or D-JNKI1, respectively, did not restore the antiproliferative effect. We next examined changes in the expression of cell cycle related proteins. LPA decreased cyclin $D_1 and cyclin D_2$ levels but increased $p21^{WAF1/CIP1}$ (p21) and $p27^{KIP1}$ (p27) levels, which are known inhibitors of cyclin-dependent kinase. Flow cytometric analysis showed the inhibition of DNA synthesis by a reduction in the S phase and an increase in the $G_0/G_1$ phase of the cell cycle. Our results suggest that LPA induces cell cycle arrest by regulating the expressions of cell cycle related proteins.

Melatonin Induces Apoptotic Cell Death via p53 in LNCaP Cells

  • Kim, Chi-Hyun;Yoo, Yeong-Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.365-369
    • /
    • 2010
  • In this study, we examined whether melatonin promotes apoptotic cell death via p53 in prostate LNCaP cells. Melatonin treatment significantly curtailed the growth of LNCaP cells in a dose- and time-dependent manner. Melatonin treatment (0 to 3 mM) induced the fragmentation of poly(ADP-ribose) polymerase (PARP) and activation of caspase-3, caspase-8, and caspase-9. Moreover, melatonin markedly activated Bax expression and decreased Bcl-2 expression in dose increments. To investigate p53 and p21 expression, LNCaP cells were treated with 0 to 3 mM melatonin. Melatonin increased the expressions of p53, p21, and p27. Treatment with mitogen-activated protein kinase (MAPK) inhibitors, PD98059 (ERK inhibitor), SP600125 (JNK inhibitor) and SB202190 (p38 inhibitor), confirmed that the melatonin-induced apoptosis was p21-dependent, but ERK-independent. With the co-treatment of PD98059 and melatonin, the expression of p-p53, p21, and MDM2 did not decrease. These effects were opposite to the expression of p-p53, p21, and MDM2 observed with SP600125 and SB202190 treatments. Together, these results suggest that p53-dependent induction of JNK/p38 MAPK directly participates in apoptosis induced by melatonin.

Effect of Fucus evanescens Fucoidan on Expression of Matrix Metalloproteinase-1 Promoter, mRNA, Protein and Signal Pathway (Fucus evanescens fucoidan의 matrix metalloproteinase-1 promoter, mRNA, 단백질 발현과 신호전달경로에 미치는 효과)

  • Ku, Mi-Jeong;Jung, Ji-Won;Lee, Myeong-Sook;Cho, Byung-Kyu;Lee, Soon-Rye;Lee, Hye-Sook;Vischuk, Olesya S.;Zvyagintseva, Tatyana N.;Ermakova, Svetlana P.;Lee, Yong-Hwan
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1603-1610
    • /
    • 2010
  • Fucoidans are sulfated fucosylated polymers from the cell wall of brown algae. We assessed the effects of Fucus evanescens fucoidan on ultraviolet-B (UVB)-induced expression of matrix metalloproteinase-1 (MMP-1) protein, mRNA, and promoter, and the phosphorylation of mitogen-activated protein kinases in vitro using an immortalized human keratinocyte cell line. Pretreatment with 10 and $100\;{\mu}g/ml$ fucoidan significantly inhibited UVB-induced MMP-1 protein, mRNA and promoter activity, compared to UVB irradiation alone. Extracellular signal regulated kinase activation was markedly inhibited by treatment with fucoidan, though c-JUN N-terminal kinase activity and p38 activation were only marginally affected by fucoidan. F. evanescens fucoidan may be a potential therapeutic agent for the prevention and treatment of skin photoaging.

Effects of fermented black ginseng on wound healing mediated by angiogenesis through the mitogen-activated protein kinase pathway in human umbilical vein endothelial cells

  • Park, Jun Yeon;Lee, Dong-Soo;Kim, Chang-Eop;Shin, Myoung-Sook;Seo, Chang-Seob;Shin, Hyeun-Kyoo;Hwang, Gwi Seo;An, Jun Min;Kim, Su-Nam;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.524-531
    • /
    • 2018
  • Background: Fermented black ginseng (FBG) is produced through several cycles of steam treatment of raw ginseng, at which point its color turns black. During this process, the original ginsenoside components of raw ginseng (e.g., Re, Rg1, Rb1, Rc, and Rb2) are altered, and less-polar ginsenosides are generated (e.g., Rg3, Rg5, Rk1, and Rh4). The aim of this study was to determine the effect of FBG on wound healing. Methods: The effects of FBG on tube formation and on scratch wound healing were measured using human umbilical vein endothelial cells (HUVECs) and HaCaT cells, respectively. Protein phosphorylation of mitogen-activated protein kinase was evaluated via Western blotting. Finally, the wound-healing effects of FBG were assessed using an experimental cutaneous wounds model in mice. Results and Conclusion: The results showed that FBG enhanced the tube formation in HUVECs and migration in HaCaT cells. Western blot analysis revealed that FBG stimulated the phosphorylation of p38 and extracellular signal-regulated kinase in HaCaT cells. Moreover, mice treated with $25{\mu}g/mL$ of FBG exhibited faster wound closure than the control mice did in the experimental cutaneous wounds model in mice.