• 제목/요약/키워드: p-38

검색결과 9,378건 처리시간 0.043초

고농도 포도당이 뼈모세포와 치주인대세포의 세포자멸사에 미치는 영향에 관한 연구 (Effect of Glucose at High Concentrations on the Apoptosis of the Cultured Periodontal Ligament Cells and Osteoblasts)

  • 박성호;주성숙;홍정표;신제원
    • Journal of Oral Medicine and Pain
    • /
    • 제32권4호
    • /
    • pp.357-364
    • /
    • 2007
  • 고농도 포도당이 뼈모세포와 치주인대세포의 세포자멸사에 미치는 영향과 그 경로를 알아보기 위하여 뼈모세포주인 MC3T3-E1 (E1) 세포와 사람 치주인대로부터 일차배양을 통해 얻은 치주인대세포를 1,000 mg/L 농도의 포도당이 포함된 배양액 (대조군)과 4,500 mg/L 농도의 포도당이 포함된 배양액 (실험군)으로 나누어 24시간과 48시간 배양하였다. 그 후, ELISA assay를 통해 p38 MAPK와 caspase-3의 발현을 평가하고 Western blot을 통해 JNK-1과 ERK-1의 발현을 평가하여 다음과 같은 결론을 얻었다. 1. 뼈모세포와 치주인대세포 모두 대조군에 비해 실험군에서 caspase-3와 p38 MAPK 발현이 증가하였다. 2. 실험군에서의 caspase-3와 p38 MAPK 발현은 뼈모세포에 비해 치주인대세포에서 더욱 크게 증가하였다. 3. 뼈모세포와 치주인대세포 모두 대조군에 비해 실험군에서 JNK-1 발현이 증가하였다. 4. 뼈모세포와 치주인대세포 모두 ERK-1 발현에는 변화가 없었다. 이상의 결과로 보아, 고혈당 조건에 의해 뼈모세포와 치주인대세포의 세포자멸사가 증가하며, 치주인대세포가 고혈당 조건에 더욱 민감하게 반응하여 세포자멸사가 크게 증가하는 것으로 생각된다. 또한 이들 세포의 세포자멸사 과정은 p38 MAPK와 JNK-1 경로가 관여하며 ERK-1 경로는 관여하지 않는 것으로 추정된다.

인체간암세포에서 genistein의 TRAIL에 의한 apoptosis 유도 상승효과에서 미치는 p38 MAPK signaling pathway의 영향 (Enhancement of TRAIL-Mediated Apoptosis by Genistein in Human Hepatocellular Carcinoma Hep3B Cells: Roles of p38 MAPK Signaling Pathway)

  • 김성윤;박철;박상은;홍상훈;최영현
    • 생명과학회지
    • /
    • 제21권11호
    • /
    • pp.1549-1557
    • /
    • 2011
  • TRAIL은 다양한 암세포에서 apoptosis를 유발하는 것으로 알려져 있으나 간암세포를 포함한 일부 암세포에서 TRAIL 저항성이 획득된 것으로 보고되어지고 있다. 대두의 대표적인 생리활성 물질인 isoflavonoid계열 genistein은 이미 많은 암세포에서 apoptotic 효능을 가진 것으로 알려져 있으나 TRAIL에 의한 apoptosis 유도에 미치는 영향과 기전에 대한 연구는 여전히 미비한 실정이다. 본 연구에서는 TRAIL 저항성을 가진 Hep3B 간암세포에서 TRAIL에 의한 apoptosis 유도를 genistein이 더욱 상승시킬 수 있음을 보고하고자 한다. 본 연구의 결과에 의하면, Hep3B 세포에 세포독성을 보이지 않는 범위의 genistein에 의한 TRAIL 유도 apoptosis 상승효과는 미토콘드리아의 기능 손상과 연관성이 있었다. 또한 genistein과 TRAIL 복합처리에 의한 apoptosis 유도는 p38 MAPK 활성 저하로 더욱 상승하였으며, 이는 Bid의 truncation 증가, pro-apoptotic 단백질인 Bax의 발현 증가와 anti-apoptotic Bcl-2의 발현 감소 및 미토콘드리아에서 세포질로의 cytochrome c 유출의 증가와 연관성이 있었다. 또한 p38 MAPK 억제제는 genistein 및 TRAIL 복합처리에 의한 caspase의 활성 증가와 PARP 단백질의 단편화를 촉진시켰으며, 이는 미토콘드리아의 기능적 손상 증가에 의한 것임을 알 수 있었다. 따라서 본 연구의 결과는 genistein이 TRAIL에 의한 apoptosis 유도를 효과적으로 증가시킬 수 있으며, 이러한 과정이 p38 MAPK 의존적으로 이루어짐을 알 수 있었다.

Cytochalasin D Regulates Retinoic Acid Induced COX-2 Expression but not Dedifferentiation via p38kinase Pathway in Rabbit Articular Chondrocytes

  • ;김송자
    • 대한의생명과학회지
    • /
    • 제15권4호
    • /
    • pp.343-347
    • /
    • 2009
  • Cytochalasin D (CD) is known as a disruptor of actin cytoskeleton architecture in chondrocytes. We have studied the role of CD in retinoic acid (RA) caused dedifferentiation and inflammation responses in rabbit articular chondrocytes. We have examined the effect of CD on RA induced dedifferentiation of chondrocytes. CD inhibited RA induced dedifferentiation determined by Western blot analysis and Alcian blue staining in rabbit articular chondrocytes. Also, CD additionally reduced inflammation response molecules such as cyclooxygenase-2 (COX-2) and prostaglandin $E_2$ ($PGE_2$) in RA treated cells. Treatment of CD reduced phosphorylation of p38 by treatment of RA. Inhibiton of p38kinase with SB203580 reduced expression of COX-2 and production of $PGE_2$ by treatment of CD in RA treated cells. But, Inhibiton of p38kinase with SB203580 did not any relationship with effect of CD on RA caused dedifferentiation. In summary, our results indicate that CD regulates RA reduced expression of COX-2 and production of PGE2 via p38kinase pathway.

  • PDF

Activation of JNK/p38 Pathway is Responsible for α-Methyl-n-butylshikonin Induced Mitochondria-Dependent Apoptosis in SW620 Human Colorectal Cancer Cells

  • Wang, Hai-Bing;Ma, Xiao-Qiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권15호
    • /
    • pp.6321-6326
    • /
    • 2014
  • ${\alpha}$-Methyl-n-butylshikonin (MBS), one of the active components in the root extracts of Lithospermum erythrorhizon, posses antitumor activity. In this study, we assess the molecular mechanisms of MBS in causing apoptosis of SW620 cells. MBS reduced the cell viability of SW620 cells in a dose-and time-dependent manner and induced cell apoptosis. Treatment of SW620 cells with MBS down-regulated the expression of Bcl-2 and up-regulated the expression of Bak and caused the loss of mitochondrial membrane potential. Additionally, MBS treatment led to activation of caspase-9, caspase-8 and caspase-3, and cleavage of PARP, which was abolished by pretreatment with the pan-caspase inhibitor Z-VAD-FMK. MBS also induced significant elevation in the phosphorylation of JNK and p38. Pretreatment of SW620 cells with specific inhibitors of JNK (SP600125) and p38 (SB203580) abrogated MBS-induced apoptosis. Our results demonstrated that MBS inhibited growth of colorectal cancer SW620 cells by inducing JNK and p38 signaling pathway, and provided a clue for preclinical and clinical evaluation of MBS for colorectal cancer therapy.

Beta-carboline alkaloids harmaline and harmalol induce melanogenesis through p38 mitogen-activated protein kinase in B16F10 mouse melanoma cells

  • Park, Sun-Young;Kim, Young-Hun;Kim, Young-Hee;Park, Geun-Tae;Lee, Sang-Joon
    • BMB Reports
    • /
    • 제43권12호
    • /
    • pp.824-829
    • /
    • 2010
  • Melanin synthesis is regulated by melanocyte specific enzymes and related transcription factors. $\beta$-carboline alkaloids including harmaline and harmalol are widely distributed in the environment including several plant families and alcoholic beverages. Presently, melanin content and tyrosinase activity were increased in melanoma cells by harmaline and harmalol in concentration- and time-dependent manners. Increased protein levels of tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2 were also evident. In addition, immunofluorescence and Western blot analyses revealed harmaline and harmalol increased cAMP response element binding protein phosphorylation and microphthalmia-associated transcription factor expression. In addition to studying the signaling that leads to melanogenesis, roles of the p38 MAPK pathways by the harmaline and harmalol were investigated. Harmaline and harmalol induced time-dependent phosphorylation of p38 MAPK. Harmaline and harmalol stimulated melanin synthesis and tyrosinase activity, as well as expression of tyrosinase and TRP-1 and TRP-2 indicating that these harmaline and harmalol induce melanogenesis through p38 MAPK signaling.

Lincomycin induces melanogenesis through the activation of MITF via p38 MAPK, AKT, and PKA signaling pathways

  • Lee, Min Suk;Chung, You Chul;Moon, Seung-Hyun;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • 제64권4호
    • /
    • pp.323-331
    • /
    • 2021
  • Lincomycin is a lincosamide antibiotic isolated from the actinomycete Streptomyces lincolnensis. Moreover, it has been found to be effective against infections caused by Staphylococcus, Streptococcus, and Bacteroides fragillis. To identify the melanin-inducing properties of lincomycin, we used B16F10 melanoma cells in this study. The melanin content and intracellular tyrosinase activity in the cells were increased by lincomycin, without any cytotoxicity. Western blot analysis indicated that the protein expressions of tyrosinase, tyrosinase related protein 1 (TRP1) and TRP2 increased after lincomycin treatment. In addition, lincomycin enhanced the expression of master transcription regulator of melanogenesis, a microphthalmia-associated transcription factor (MITF). Lincomycin also increased the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and decreased the AKT phosphorylation. Moreover, the activation of tyrosinase activity by lincomycin was inhibited by the treatment with SB203580, which is p38 inhibitor. Furthermore, we also found that lincomycin-induced tyrosinase expression was reduced by H-89, a specific protein kinase A (PKA) inhibitor. These results indicate that lincomycin stimulate melanogenesis via MITF activation via p38 MAPK, AKT, and PKA signal pathways. Thus, lincomycin can potentially be used for treatment of hypopigmentation disorders.

p38 mitogen-activated protein kinase contributes to TNFα-induced endothelial tube formation of bone-marrow-derived mesenchymal stem cells by activating the JAK/STAT/TIE2 signaling axis

  • Sukjin Ou;Tae Yoon Kim;Euitaek Jung;Soon Young Shin
    • BMB Reports
    • /
    • 제57권5호
    • /
    • pp.238-243
    • /
    • 2024
  • Bone marrow-derived mesenchymal stem cells (BM-MSCs) can differentiate into endothelial cells in an inflammatory microenvironment. However, the regulatory mechanisms underlying this process are not entirely understood. Here, we found that TIE2 in BM-MSCs was upregulated at the transcriptional level after stimulation with tumor necrosis factor-alpha (TNFα), a major pro-inflammatory cytokine. Additionally, the STAT-binding sequence within the proximal region of TIE2 was necessary for TNFα-induced TIE2 promoter activation. TIE2 and STAT3 knockdown reduced TNFα-induced endothelial tube formation in BM-MSCs. Among the major TNFα-activated MAP kinases (ERK1/2, JNK1/2, and p38 MAPK) in BM-MSCs, only inhibition of the p38 kinase abrogated TNFα-induced TIE2 upregulation by inhibiting the JAK-STAT signaling pathway. These findings suggest that p38 MAP contributes to the endothelial differentiation of BM-MSCs by activating the JAK-STAT-TIE2 signaling axis in the inflammatory microenvironment.

Magnolol Inhibits iNOS, p38 Kinase, and NF-κB/Rel in Murine Macrophages

  • Li Mei Hong;Chang In-Youp;Youn Ho-Jin;Jang Dae-Sik;Kim Jin-Sook;Jeon Young-Jin
    • Toxicological Research
    • /
    • 제22권3호
    • /
    • pp.293-299
    • /
    • 2006
  • We demonstrate that magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, inhibits LPS-induced expression of iNOS gene in RAW 264.7 cells(murine macrophage cell line). Treatment of RAW 264.7 cells with magnolol inhibited LPS-stimulated nitric oxide production in a dose-related manner. RT-PCR analysis showed that the decrease of NO was due to the inhibition of iNOS gene expression. Western immunoblot analysis of phosphorylate p38 kinase showed magnolol significantly inhibited the phosphorylation of p38 kinase which is important in the regulation of iNOS gene expression. The specific p38 inhibiter SB203580 abrogated the LPS-induced NO generation and iNOS expression, whereas the selective MEK-1 inhibitor PD98059 did not affect the NO induction. Immunostaining of p65 and reporter gene assay showed that magnolol inhibited NF-${\kappa}/Rel$ nuclear translocation and transcriptional activation, respectively. Collectively, this series of experiments indicates that magnolol inhibits iNOS gene expression by blocking NF-k/Rel and p38 kinase signaling. Due to the critical role that NO release plays in mediating inflammatory responses, the inhibitory effects of magnolol or iNOS suggest that magnolol may represent a useful anti-inflammatory agent.

Cyclic Mechanical Stretch Stimulates the Proliferation of C2C12 Myoblasts and Inhibits Their Differentiation via Prolonged Activation of p38 MAPK

  • Kook, Sung-Ho;Lee, Hyun-Jeong;Chung, Wan-Tae;Hwang, In-Ho;Lee, Seung-Ah;Kim, Beom-Soo;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.479-486
    • /
    • 2008
  • Mitogen-activated protein kinases (MAPKs) play an indispensable role in activation of the myogenic program, which is responsive to mechanical stimulation. Although there is accumulating evidence of mechanical force-mediated cellular responses, the role of MAPK in regulating the myogenic process in myoblasts exposed to cyclic stretch is unclear. Cyclic stretch induced the proliferation of C2C12 myoblasts and inhibited their differentiation into myotubes. In particular, it induced persistent phosphorylation of p38 kinase, and decreased the level of phosphorylation of extracellular-signal regulated kinase (ERK). Partial inhibition of p38 phosphorylation increased cellular levels of MyoD and p-ERK in stretched C2C12 cells, along with increased myotube formation. Treatment with $10{\mu}M$ PD98059 prevented myogenin expression in response to a low dose of SB203580 ($3{\mu}M$) in the stretched cells, suggesting that adequate ERK activation is also needed to allow the cells to differentiate into myotubes. These results suggest that cyclic stretch inhibits the myogenic differentiation of C2C12 cells by activating p38-mediated signaling and inhibiting ERK phosphorylation. We conclude that p38 kinase, not ERK, is the upstream signal transducer regulating cellular responses to mechanical stretch in skeletal muscle cells.

Podophyllotoxin Induces ROS-Mediated Apoptosis and Cell Cycle Arrest in Human Colorectal Cancer Cells via p38 MAPK Signaling

  • Lee, Seung-On;Joo, Sang Hoon;Kwak, Ah-Won;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.658-666
    • /
    • 2021
  • Podophyllotoxin (PT), a lignan compound from the roots and rhizomes of Podophyllum peltatum, has diverse pharmacological activities including anticancer effect in several types of cancer. The molecular mechanism of the anticancer effects of PT on colorectal cancer cells has not been reported yet. In this study, we sought to evaluate the anticancer effect of PT on human colorectal cancer HCT116 cells and identify the detailed molecular mechanism. PT inhibited the growth of cells and colony formation in a concentration-dependent manner and induced apoptosis as determined by the annexin V/7-aminoactinomycin D double staining assay. PT-induced apoptosis was accompanied by cell cycle arrest in the G2/M phase and an increase in the generation of reactive oxygen species (ROS). The effects of PT on the induction of ROS and apoptosis were prevented by pretreatment with N-acetyl-L-cysteine (NAC), indicating that an increase in ROS generation mediates the apoptosis of HCT116 cells induced by PT. Furthermore, Western blot analysis showed that PT upregulated the level of phospho (p)-p38 mitogen-activated protein kinase (MAPK). The treatment of SB203580, a p38 inhibitor, strongly prevented the apoptosis induced by PT, suggesting that PT-induced apoptosis involved the p38 MAPK signaling pathway. In addition, PT induced the loss of mitochondrial membrane potential and multi-caspase activation. The results suggested that PT induced cell cycle arrest in the G2/M phase and apoptosis through the p38 MAPK signaling pathway by upregulating ROS in HCT116 cells.