• 제목/요약/키워드: ozone transport

검색결과 104건 처리시간 0.032초

OZIPR 모델링 결과의 민감도 분석 (A Sensitivity Analysis of the OZIPR Modeling Result for the Seoul Metropolitan Area)

  • 이선화;;김용표
    • 한국입자에어로졸학회지
    • /
    • 제7권3호
    • /
    • pp.99-108
    • /
    • 2011
  • To establish area specific control strategies for the reduction of the ozone concentration, the Ozone Isopleth Plotting Package for Research(OZIPR) model has been widely used. However, the model results tend to changed by various input parameters such as the background concentration, emission amount of NOx and volatile organic compounds (VOCs), and meteorological condition. Thus, sensitivity analysis should be required to ensure the reliability of the result. The OZIPR modeling results for five local government districts in the Seoul Metropolitan Area (SMA) in June 2000 were used for the sensitivity analysis. The sensitivity analysis result showed that the modeling result of the SMA being VOC-limited region be still valid for a wide range of input parameters' variation. The estimated ozone concentrations were positively related with the initial VOCs concentrations while were negatively related with the initial NOx concentrations. But, the degree of the variations at each local district was different suggesting area specific characteristics being also important. Among the five local governments, Suwon was chosen to identify other variance through the period from April to September in 2000. The monthly modeling results show different ozone values, but still showing the characteristics of VOCs-limited region. Limitations due to not considering long range transport and transfer from neighbor area, limitation of input data, error between observed data and estimated data are all discussed.

연안 대도시 해풍 풍하측 계곡지역의 지표오존 분포 특성: 계절변화와 바람과의 관계 (Characteristics of Surface Ozone in a Valley Area Located Downwind from Coastal Cities under Sea-breeze Condition: Seasonal Variation and Related Winds)

  • 강재은;오인보;송상근;김유근
    • 한국환경과학회지
    • /
    • 제21권2호
    • /
    • pp.153-163
    • /
    • 2012
  • The seasonal variations of ozone ($O_3$) concentrations were investigated with regard to the relationship between $O_3$ and wind distributions at two different sites (Jung Ang (JA): a semi-closed topography and Seo Chang (SC): a closed topography) within a valley city (Yangsan) and their comparison between these sites (JA and SC) and two non-valley sites (Dae Jeo (DJ) and Sang Nam (SN)) located downwind from coastal cities (Busan and Ulsan). This analysis was performed using the data sets of hourly $O_3$ concentrations, meteorological factors (especially, wind speed and direction), and those on high $O_3$ days exceeding the 8-h standard (60 ppb) during 2008-2009. In summer and fall (especially in June and October), the monthly mean values of the daily maximum $O_3$ concentrations and the number of high $O_3$ days at JA (and SC) were relatively higher than those at DJ (and SN). The increase in daytime $O_3$ concentrations at JA in June was likely to be primarily impacted by the transport of $O_3$ and its precursors from the coastal emission sources in Busan along the dominant southwesterly winds (about 5 m/s) under the penetration of sea breeze condition, compared to other months and sites. Such a phenomenon at SC in October was likely to be mainly caused by the accumulation of $O_3$ and its precursors due to the relatively weak winds under the localized stagnant weather condition rather than the contribution of regional transport from the emission sources in Busan and Ulsan.

시베리아 산불이 2003년 봄철 동아시아 오존 농도에 끼치는 영향 연구 (A study of the Effects of Siberian Wildfires on Ozone Concentrations over East Asia in Spring 2003)

  • 박록진;정재인;윤대옥
    • 대기
    • /
    • 제19권3호
    • /
    • pp.227-235
    • /
    • 2009
  • Global climate warming induced by long-lived greenhouse gases is expected to cause increases in wildfire frequencies and intensity in boreal forest regions of mid- and high-latitudes in the future. Siberian forest fires are one of important sources for air pollutants such as ozone and aerosols over East Asia. Thus an accurate quantification of forest fire influences on air quality is crucial, in particular considering its higher occurrences expected under the future warming climate conditions. We here use the 3-D global chemical transport model (GEOS-Chem) with the satellite constrained fire emissions to quantify Siberian fire effects on ozone concentrations in East Asia. Our focus is mainly on spring 2003 when the largest fires occurred over Siberia in the past decade. We first evaluated the model by comparing to the EANET observations. The model reproduced observed ozone concentrations in spring 2003 with the high $R^2$ of 0.77 but slightly underestimated by 20%. Enhancements in seasonal mean ozone concentrations were estimated from the difference in simulations with and without Siberian fires and amounted up to 24 ppbv over Siberia. Effects of Siberian fires also resulted in 3-10 ppbv incresases in Korea and Japan. These increases account for about 5-15% of the ozone air quality standard of 60 ppbv in Korea, indicating a significant effect of Siberian fires on ozone concentrations. We found however that possible changes in regional meteorology due to Siberian fires may also affect air quality. Further study on the interaction between regional air quality and meteorology is necessary in the future.

2006년 오존 고농도 사례 시 부산권 지역 isoprene 배출이 오존 농도에 미치는 영향 분석 (Influence of Isoprene Emissions on Ozone Concentrations in the Greater Busan Area during a High Ozone Episode in 2006)

  • 김유근;조영순;송상근;강윤희;오인보
    • 한국환경과학회지
    • /
    • 제19권7호
    • /
    • pp.829-841
    • /
    • 2010
  • The estimation of a biogenic volatile organic compound (BVOC, especially isoprene) and the influence of isoprene emissions on ozone concentrations in the Greater Busan Area (GBA) were carried out based on a numerical modeling approach during a high ozone episode. The BVOC emissions were estimated using a biogenic emission information system (BEIS v3.14) with vegetation data provided by the forest geographical information system (FGIS), land use data provided by the environmental geographical information system (EGIS), and meteorological data simulated by the MM5. Ozone simulation was performed by two sets of simulation scenarios: (1) without (CASE1) and (2) with isoprene emissions (CASE2). The isoprene emission (82 ton $day^{-1}$) in the GBA was estimated to be the most dominant BVOC followed by methanol (56) and carbon monoxide (28). Largest impacts of isoprene emissions on the ozone concentrations (CASE2-CASE1) were predicted to be about 4 ppb in inland locations where a high isoprene was emitted and to be about 2 ppb in the downwind and/or convergence regions of wind due to both the photochemical reaction of ozone precursors (e.g., high isoprene emissions) and meteorological conditions (e.g., local transport).

산업단지내 독성유기화합물 및 중금속으로 오염된 토양의 정화복원기술 상용화 연구

  • 김수곤;손규동;박지연;최희철;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.31-34
    • /
    • 2004
  • Feasibility of electrokinetic(EK)-Fenton process and Ozone chemical oxidation were investigated for tile removal of organic contaminants and heavy metals from the contaminated soil. In EK-Fenton process, accumulated electroosmotic flow(EOF) was 80 L for 26 days. Removal efficiency of TPH, As, and Ni were 61%, 36%, and 47%, respectively. The concentration of As was high near the anode due to the transport of anionic As toward the anode, while the concentration of Ni was high near the cathode by the movement of cationic Ni to the cathode. Field scale application of in-situ ozonation was carried out for removal of TPH in 3-D test cell (3 m$\times$2 m$\times$2 m). After 25 days of ozone injection, more than 80% of removal rate was observed through the test cell.

  • PDF

Enhancement of Ozone and Carbon Monoxide Associated with Upper Cut-off Low during Springtime in East Asia

  • Moon, Yun-Seob;Drummond, James R.
    • 한국대기환경학회지
    • /
    • 제26권5호
    • /
    • pp.475-489
    • /
    • 2010
  • In order to verify the enhancement of ozone and carbon monoxide (CO) during springtime in East Asia, we investigated weather conditions and data from remote sensors, air quality models, and air quality monitors. These include the geopotential height archived from the final (FNL) meteorological field, the potential vorticity and the wind velocity simulated by the Meteorological Mesoscale Model 5 (MM5), the back trajectory estimated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the total column amount of ozone and the aerosol index retrieved from the Total Ozone Mapping Spectrometer (TOMS), the total column density of CO retrieved from the Measurement of Pollution in the Troposphere (MOPITT), and the concentration of ozone and CO simulated by the Model for Ozone and Related Chemical Tracers (MOZART). In particular, the total column density of CO, which mightoriginate from the combustion of fossil fuels and the burning of biomass in China, increased in East Asia during spring 2000. In addition, the enhancement of total column amounts of ozone and CO appeared to be associated with both the upper cut-off low near 500 hPa and the frontogenesis of a surface cyclone during a weak Asian dust event. At the same time, high concentrations of ozone and CO on the Earth's surface were shown at the Seoul air quality monitoring site, located at the surface frontogenesis in Korea. It was clear that the ozone was invaded by the downward stretched vortex anomalies, which included the ozone-rich airflow, during movement and development of the cut-off low, and then there was the catalytic photochemical reaction of ozone precursors on the Earth's surface during the day. In addition, air pollutants such as CO and aerosol were tracked along both the cyclone vortex and the strong westerly as shown at the back trajectory in Seoul and Busan, respectively. Consequently, the maxima of ozone and CO between the two areas showed up differently because of the time lag between those gases, including their catalytic photochemical reactions together with the invasion from the upper troposphere, as well as the path of their transport from China during the weak Asian dust event.

서울지역 연직 오존 분포: 2003년 6월 6~9일 오존존데 관측 (Vertical Ozone Distribution over Seoul: Ozonesonde Measurements During June 6~9, 2003)

  • 황미경;김유근;오인보;송상근;임윤규
    • 한국대기환경학회지
    • /
    • 제24권2호
    • /
    • pp.196-205
    • /
    • 2008
  • 오존 농도와 기상 인자의 연직관측을 수행하여 오존분포와 하부 대기구조와의 관계를 분석하였다. 관측은 서울 방이동에서 2003년 6월 $6{\sim}9$일에 하루 2회씩(주 야간)총 8회에 걸쳐 이루어졌으며, 고도 5 km 이내의 관측결과를 중심으로 대기경계층 일변화와 연직 오존농도 변화를 집중분석하였다. 관측 결과, 대기경계층 내 야간안정층 및 혼합층 발달에 따라 큰 오존농도 분포변화를 확인할 수 있었다. 야간에는 안정층 내에서 $NO_x$ 적정반응으로 0에 가까운 낮은 오존농도를 나타내었다. 한편 오후에는 혼합층 내에서 비교적 일정한 오존농도 분포를 나타내며, 대기경계층 상부에서 100 ppb 이상의 최고 농도가 관측되었다. 특히 지표부근 오존농도가 높았던 6월 8일의 관측결과를 통해, 오존의 생성 소멸과 관련한 국지효과뿐만 아니라 제한된 혼합층 발달이 고농도오존 발생에 중요한 영향을 미침을 확인할 수 있었다. 또한 관측 기간 중, 국지규모 이상의 수송효과에 의한 대기경계층 상부의 농도 상승과 종관기류 변화에 따른 수송 효과가 간접적으로 확인되었다. 연직 오존분포 분석에 있어 충분치 않은 관측 자료로 인해 정확한 시간적 변동을 고찰할 수 없는 한계를 보였다. 하지만 본 연구를 통해 서울지역 대기하층의 오존 분포 변화와 기상학적 특징을 살펴봄으로서 고농도오존 현상의 역학적인 이해를 도울 것으로 생각되며, 관측 결과는 도시 오존제어를 위한 광화학 수치모델링의 기초 자료로 활용될 수 있을 것이다.

강릉과 원주지역의 야간 오존 변화에 대한 분석 (The Analysis of the Nocturnal Ozone Variations over Kangreung and Wonju)

  • 김현숙;이현진;김재환
    • 한국지구과학회지
    • /
    • 제25권6호
    • /
    • pp.474-483
    • /
    • 2004
  • 이 논문은 강릉과 원주지방의 오존의 일변화의 특성을 분석하였다. 원주지방의 오존의 일변화는 대도시 지역에서 관측되어지는 오후에 최대치, 일출부근에 최소치를 보여주고 있다. 그러나 강릉지방의 일변화에서는 오후에 최대치를 보여주나 새벽 3시경이 2차 극값이 관측되어졌다. 3차 극값의 경우 오후 최대 값보다 높은 값이 종종 관측되어졌다. 이와 같은 새벽에 발생하는 오존 상승은 일년 내내 관측되어졌으나 그 양과 범위에서 봄철이 가장 뚜렷하였다. 이와 같은 새벽 오존 상승에 대한 원인을 알아보기 위하여 기상인자와 오존의 상관관계와, HYSPLIT모델을 이용하여 공기의 기원을 조사하였다. 새벽 오존 농도 상승이 나타나는 날은 바람이 강하고 온도가 상대적으로 높은 날이었다. 새벽오존 농도 상승이 일어날 때 모델을 이용한 공기의 기원을 분석해본 결과 서풍이 불면서 하강운동이 동반한 경우였다. 이러한 분석결과는 편서풍이 강하게 부는 봄철에 대도시가 밀접한 강릉의 서쪽 지역에서 이동되어온 오존의 영향에 의한 것으로 사료되어진다. 이런 경우 밤에도 바람이 강하게 불어 강력한 혼합현상에 의해 오존이 풍부한 대기 상층의공기가 하부로 유입되면서 지표 부근 오존의 양이 증가한 것으로 보인다.

Characteristics of Ozone Precursor Emissions and POCP in the Biggest Port City in Korea

  • Song, Sang-Keun;Shon, Zang-Ho;Son, Hyun Keun
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권2호
    • /
    • pp.146-157
    • /
    • 2015
  • Emissions of ozone precursors ($NO_x$ and VOCs) and photochemical ozone creation potentials (POCPs) of VOC emission sources were investigated in the largest port city (i.e., Busan), Korea during the year 2011. This analysis was performed using the Clean Air Policy Support System (CAPSS) national emission inventory provided by the National Institute of Environmental Research (NIER), Korea. For $NO_x$, the emissions from off-road mobile sources in Busan were the most dominant (e.g., $31,202ton\;yr^{-1}$), accounting for about 60% of the total $NO_x$ emissions. The emission from shipping of off-road mobile sources (e.g., $24,922ton\;yr^{-1}$) was a major contributor to their total emissions, amounting to 47% of the total $NO_x$ emissions due to the port-related activities in Busan. For VOCs, the emission source category of solvent usage was predominant (e.g., $36,062ton\;yr^{-1}$), accounting for approximately 82% of the total VOC emissions. Out of solvent usages, the emission from painting was the most dominant ($22,733ton\;yr^{-1}$), comprising 52% of the total emissions from solvent usages. The most dominant VOC species emitted from their sources in Busan was toluene, followed by xylene, butane, ethylbenzene, n-butanol, isopropyl alcohol, and propane. The major emission sources of toluene and xylene were found to be painting of coil coating and ship building, respectively. The value of POCP for the off-road mobile source (61) was the highest in ten major activity sectors of VOC emissions. Since the POCP value of ship transport of off-road mobile source (72) was also high enough to affect ozone concentration, the ship emission can play a significant role in ozone production of the port city like Busan.