DOI QR코드

DOI QR Code

Vertical Ozone Distribution over Seoul: Ozonesonde Measurements During June 6~9, 2003

서울지역 연직 오존 분포: 2003년 6월 6~9일 오존존데 관측

  • Hwang, Mi-Kyoung (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Yoo-Keun (Division of Earth Environmental System, Pusan National University) ;
  • Oh, In-Bo (Institute for Multi-dimensional Air Quality Studies, University of Houston) ;
  • Song, Sang-Keun (Division of Earth Environmental System, Pusan National University) ;
  • Lim, Yun-Kyu (K-weather Co., Ltd.)
  • 황미경 (부산대학교 지구환경시스템학부) ;
  • 김유근 (부산대학교 지구환경시스템학부) ;
  • 오인보 (미국 Houston 대학교 IMAQS 연구소) ;
  • 송상근 (부산대학교 지구환경시스템학부) ;
  • 임윤규 (K-weather(주))
  • Published : 2008.04.30

Abstract

Variability in vertical ozone and meteorological profiles was measured by 2Z electrochemical concentration cells (ECC) ozonesonde at Bangyi in Seoul ($37.52^{\circ}N$, $127.13^{\circ}E$) during June $6{\sim}9$, 2003 in odor to identify the vertical distribution of ozone and its relationship with the lower-atmospheric structure resulted in the high ozone concentrations near the surface. The eight profiles obtained in the early morning and the late afternoon during the study period clearly showed that the substantial change of ozone concentrations in lower atmosphere(${\sim}5\;km$), indicating that it is tightly coupled to the variation of the planetary boundary layer (PBL) structure as well as the background synoptic flow. All profiles observed early in the morning showed very low ozone concentrations near the surface with strong vertical gradients in the nocturnal stable boundary layer due to the photochemical ozone loss caused by surface NO titration under very weak vertical mixing. On the other hand, relatively uniform ozone profiles in the developed mixing layer and the ozone peaks in the upper PBL, were observed in the late afternoon. It was noted that a significant increase in ozone concentrations in the lower atmosphere occurred with the corresponding decrease of the mixing height in the late afternoon on June 8. Ozone in upper layer did not vertically vary much compared to that in PBL but changed significantly on June 6 that was closely associated with the variation of synoptic flows. Interestingly, heavily polluted ozone layers aloft (a maximum value of 115 ppb around 2 km) were formed early in the morning on 6 through 7 June under dominant westerly synoptic flows. This indicates the effects of the transport of pollutants on regional scale and consequently can give a rise to increase the surface ozone concentration by downward mixing processes enhanced in the afternoon.

오존 농도와 기상 인자의 연직관측을 수행하여 오존분포와 하부 대기구조와의 관계를 분석하였다. 관측은 서울 방이동에서 2003년 6월 $6{\sim}9$일에 하루 2회씩(주 야간)총 8회에 걸쳐 이루어졌으며, 고도 5 km 이내의 관측결과를 중심으로 대기경계층 일변화와 연직 오존농도 변화를 집중분석하였다. 관측 결과, 대기경계층 내 야간안정층 및 혼합층 발달에 따라 큰 오존농도 분포변화를 확인할 수 있었다. 야간에는 안정층 내에서 $NO_x$ 적정반응으로 0에 가까운 낮은 오존농도를 나타내었다. 한편 오후에는 혼합층 내에서 비교적 일정한 오존농도 분포를 나타내며, 대기경계층 상부에서 100 ppb 이상의 최고 농도가 관측되었다. 특히 지표부근 오존농도가 높았던 6월 8일의 관측결과를 통해, 오존의 생성 소멸과 관련한 국지효과뿐만 아니라 제한된 혼합층 발달이 고농도오존 발생에 중요한 영향을 미침을 확인할 수 있었다. 또한 관측 기간 중, 국지규모 이상의 수송효과에 의한 대기경계층 상부의 농도 상승과 종관기류 변화에 따른 수송 효과가 간접적으로 확인되었다. 연직 오존분포 분석에 있어 충분치 않은 관측 자료로 인해 정확한 시간적 변동을 고찰할 수 없는 한계를 보였다. 하지만 본 연구를 통해 서울지역 대기하층의 오존 분포 변화와 기상학적 특징을 살펴봄으로서 고농도오존 현상의 역학적인 이해를 도울 것으로 생각되며, 관측 결과는 도시 오존제어를 위한 광화학 수치모델링의 기초 자료로 활용될 수 있을 것이다.

Keywords

References

  1. 오인보, 김유근, 황미경(2005) 수도권 오존오염 패턴과 기상 학적 특성, 한국대기환경학회지, 21(3), 357-365
  2. 환경부(2006) 대기오염측정망 설치∙운영지침, 12 pp
  3. Berkowitz, C.M., J.D. Fast, S.R. Springston, R.J. Larsen, C.W. Spicer, P.V. Doskey, J.H. Hubbe, and R. Plastridge (1998) Formation mechanisms and chemical characteristics of elevated photochemical layers over the northeast United States, Journal of Geophysical Research, 103, 10631-10647 https://doi.org/10.1029/97JD03751
  4. Gerasopoulos, E., G. Kouvarakis, M. Vrekoussis, C. Donoussis, N. Mihalopoulos, and M. Kanakidou (2006) Photochemical ozone production in the Eastern Mediterranean, Atmospheric Environment, 40, 3057-3069 https://doi.org/10.1016/j.atmosenv.2005.12.061
  5. Grell, G.A., J. Didhia, and D.R. Staiffer (1994) A descrption of the fifth-generation Penn State/NCAR mesoscale model (MM5), NCAR technical Note TN-398+ STR, National Center for Atmospheric Research, Boulder, CO
  6. MacDonald, C.P., P.T. Roberts, H.H. Main, T.S. Dye, D.L. Coe, and J. Yarbrough (2001) The 1996 Paso del Norte Ozone Study: analysis of meteorological and air quality data that influence local ozone concentrations, The Science of The Total Environment, 276, 93-109 https://doi.org/10.1016/S0048-9697(01)00774-4
  7. McElroy J.L. and T.B. Smith (1993) Creation and fate of ozone layers aloft in Southern California, Atmospheric Environment, 27A, 1917-1929
  8. Mlawer, E.J., S.J. Taubman, P.D. Brown, M.J. Iacono, and S.A. Clough (1997) Radiative transper for inhomogeneous atmosphere: RRTM, a validated correlatek model for the longwave, Journal of Geophysical Research, 102, 1663-1682 https://doi.org/10.1029/96JE03111
  9. Neu, U., T. Kunzle, and H. Wanner (1994) On the relation between ozone storage in the residual layer and daily variation in near-surface ozone concentration -a case study, Boundary Layer Meteorology, 69, 221-247 https://doi.org/10.1007/BF00708857
  10. Oh, I.B., Y.K. Kim, H.W. Lee, C.H. Kim, S.K. Song, M.K. Hwang, Y.K. Lim, and Y.H. Kang (2005) Regional influence on vertical ozone distributions over Seoul in Korea, The 16th Regional Conference of Clean Air and Environment in Asian Pacific Area, Tokyo, Japan, 165
  11. Olszyna, K.J., M. Luria, and J.F. Meagher (1997) The correlation of temperature and rural ozone levels on southeastern U.S.A., Atmospheric Environment, 31, 3011-3022 https://doi.org/10.1016/S1352-2310(97)00097-6
  12. Pisano, J.T., I. McKendry, D.G. Steyn, and D.R. Hastie (1997) Vertical nitrogen dioxide and ozone concentrations measured from a tethered balloon in the Lower Fraser Valley, Atmospheric Environment, 31, 2071-2078 https://doi.org/10.1016/S1352-2310(96)00146-X
  13. Reisner, J., R.J. Rasmussen, and R.T. Bruintjet (1998) Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124B, 1071-1107
  14. Ryan, W.F., B.G. Doddridge, R.R. Dickerson, R.M. Morales, K.A. Hallock, P.T. Roberts, D.L. Blumenthal, J.A. Anderson, and K.L. Civerolo (1998) Pollutant transport during a regional $O_3$ episode in the Mid-Atlantic states, Journal of the Air & Waste Management Association, 48, 786-797 https://doi.org/10.1080/10473289.1998.10463737
  15. Sanchez-Ccoyllo, O.R., R.Y. Ynoue, L.D. Martins, and M.F. Andrade (2006) Impacts of ozone precursor limitation and meteorological variables on ozone concentration in Sao Paulo, Brazil, Atmospheric Environment, 40, 552-562 https://doi.org/10.1016/j.atmosenv.2006.04.069
  16. Sillman, S. and P.J. Samson (1995) Impact of temperature on oxidant photochemistry in urban, polluted rural and remote environments, Journal of Geophysical Research, 100, 11947-11958
  17. Solomon, P., E. Cowling, G. Hidy, and C. Furiness (2000) Comparison of scientific findings from major ozone field studies in North Ameria and Europe, Atmospheric Environment, 34, 1885-1920 https://doi.org/10.1016/S1352-2310(99)00453-7
  18. Streets, D.G., T.C. Bond, G.R. Carmichael, S.D. Fernandes, Q. Fu, D. He, Z. Klimont, S.M. Nelson, N.Y. Tsai, M.Q. Wang, J.-H. Woo, and K.F. Yarber (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, Journal of Geophysical Research, 108, 8809 https://doi.org/10.1029/2002JD003093
  19. TCEQ (Texas Commission on Environmental Quality) (2007) http://www.tceq.state.tx.us/implementation/air/airm od/texaqs-files/TexAQS_II.html#Introduction
  20. Zhang, J. and S.T. Rao (1999) The Role of vertical mixing in the temporal evolution of ground-level ozone concentrations, Journal of Applied Meteorology, 38, 1674-1691 https://doi.org/10.1175/1520-0450(1999)038<1674:TROVMI>2.0.CO;2
  21. Zhang, J., S.T. Rao, and S.M. Dagguptay (1998) Meteorological processes and ozone exceedances in the northeastern United States during the 12-16 July 1995 episode, Journal of Applied Meteorology, 37, 776-789 https://doi.org/10.1175/1520-0450(1998)037<0776:MPAOEI>2.0.CO;2