DOI QR코드

DOI QR Code

Influence of Isoprene Emissions on Ozone Concentrations in the Greater Busan Area during a High Ozone Episode in 2006

2006년 오존 고농도 사례 시 부산권 지역 isoprene 배출이 오존 농도에 미치는 영향 분석

  • Kim, Yoo-Keun (Division of Earth Environmental System, Pusan National University) ;
  • Jo, Young-Soon (Division of Earth Environmental System, Pusan National University) ;
  • Song, Sang-Keun (Division of Earth Environmental System, Pusan National University) ;
  • Kang, Yoon-Hee (Division of Earth Environmental System, Pusan National University) ;
  • Oh, In-Bo (Environmental Health Center, Ulsan University)
  • 김유근 (부산대학교 지구환경시스템학부) ;
  • 조영순 (부산대학교 지구환경시스템학부) ;
  • 송상근 (부산대학교 지구환경시스템학부) ;
  • 강윤희 (부산대학교 지구환경시스템학부) ;
  • 오인보 (울산대학교 환경보건센터)
  • Received : 2010.01.04
  • Accepted : 2010.06.29
  • Published : 2010.07.31

Abstract

The estimation of a biogenic volatile organic compound (BVOC, especially isoprene) and the influence of isoprene emissions on ozone concentrations in the Greater Busan Area (GBA) were carried out based on a numerical modeling approach during a high ozone episode. The BVOC emissions were estimated using a biogenic emission information system (BEIS v3.14) with vegetation data provided by the forest geographical information system (FGIS), land use data provided by the environmental geographical information system (EGIS), and meteorological data simulated by the MM5. Ozone simulation was performed by two sets of simulation scenarios: (1) without (CASE1) and (2) with isoprene emissions (CASE2). The isoprene emission (82 ton $day^{-1}$) in the GBA was estimated to be the most dominant BVOC followed by methanol (56) and carbon monoxide (28). Largest impacts of isoprene emissions on the ozone concentrations (CASE2-CASE1) were predicted to be about 4 ppb in inland locations where a high isoprene was emitted and to be about 2 ppb in the downwind and/or convergence regions of wind due to both the photochemical reaction of ozone precursors (e.g., high isoprene emissions) and meteorological conditions (e.g., local transport).

Keywords

References

  1. 김순태, 문난경, 조규탁, 변대원, 송은영, 2008, 남한지역 자연 배출량 산정 및 대기질 모사를 이용한 평가, 한국대기환경학회지, 24(4), 423-438. https://doi.org/10.5572/KOSAE.2008.24.4.423
  2. 산림청 산림지리정보서비스, 2007, http://fgis.foa.go.kr/.
  3. 조규탁, 김조천, 홍지형, 2006, BEIS와 CORINAIR 산출 방법에 의한 자연식생 VOC배출량 산출 비교 연구, 한국대기환경학회지, 22(2), 167-177.
  4. 환경부 지리정보서비스, 2004, http://egis.me.go.kr/egis/.
  5. Bell, M., Ellis, H., 2003, Sensitivity analysis of tropospheric ozone to modified biogenic emissions for the Mid-Atlantic region, Atmos. Environ., 38, 1879-1889. https://doi.org/10.1016/j.atmosenv.2004.01.012
  6. Benjey, W., Houyoux, M., Susick, J., 2001, Implementation of the SMOKE Emission Data Processor and SMOKE Tool Input Data Processor in Models3. In Proceedings of the Tenth Emission Inventory Conference, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Research Triangle Park, NC, 14.
  7. Byun, D. W., Ching, J. K. S., 1999, Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system, EPA/600/R-99/030, Off. of Res. and Dev., U.S. Environ. Prot. Agency, Washington, D. C..
  8. Carter, W. P. L., 1996, Condensed atmospheric mechanisms for isoprene, Atmos. Environ., 30, 4275-4290. https://doi.org/10.1016/1352-2310(96)00088-X
  9. Gery, M. W., Whitten, G. Z., Killus, J. P., Dodge, M. C., 1989, A photochemical kinetics mechanism for urban and regional scale computer modeling, J. Geophys. Res., 94, 12925-12956. https://doi.org/10.1029/JD094iD10p12925
  10. Chameides, W. L., Linsay, R. W., Richardson, J., Kiang, C. S., 1988, The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study, Science, 241, 1473-1475. https://doi.org/10.1126/science.3420404
  11. Clappier, A., Martilli, A., Grossi, P., Thunis, P., Pasi, F., Krueger, B. C., Calpini, B., Graziani, G., van den Bergh, H., 2000, Effect of Sea Breeze on Air Pollution in the Greater Athens Area. Part 1: Numerical Simulations and Field Observations, J. Appl. Meteor., 39, 546-562. https://doi.org/10.1175/1520-0450(2000)039<0546:EOSBOA>2.0.CO;2
  12. Curci, G., Beekmann, M., Vautard, R., Smiatek, G., Steinbrecher, R., Theloke, J., Friedrich, R., 2009, Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels, Atmos. Environ., 43, 1444-1455. https://doi.org/10.1016/j.atmosenv.2008.02.070
  13. Dodge, M. C., 1989, A comparison of photochemical oxidant mechanisms. J. Geophys. Res. 94, 5121-5136. https://doi.org/10.1029/JD094iD04p05121
  14. Grell, G., Dudhia, J., Stauffer, D., 1994, A Description of the Fifty Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note, TN-398+STR, 117.
  15. Guenther, A., Zimmerman, P., Wildermuth, M., 1994, Natural volatile organic compound emission rate estimates for U.S. woodland landscapes, Atmos. Environ., 28, 1197-1210. https://doi.org/10.1016/1352-2310(94)90297-6
  16. Hong, S. Y., Pan, H. L., 1996, Nonlocal boundary layer vertical diffusion in a Medium-Range Forecast model, Monthly Weather Review, 124, 2322-2339. https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
  17. Kesselmeier, J., Ciccioli, P., Kuhn, U., Stefani, P., Biesenthal, T., Rottenberger, S., Wolf, A., Vitullo, M., Valentini, R., Nobre, A., Kabat, P., Andreae, M. O., 2002, Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget, Glob. Biogeochem. Cycle, 16, 1126. https://doi.org/10.1029/2001GB001813
  18. Lamb, B., Guenther, A., Gay, D., Westberg, H., 1987, A national inventory of biogenic hydrocarbon emissions, Atmos. Environ., 21, 1695-1705. https://doi.org/10.1016/0004-6981(87)90108-9
  19. Poisson, N., Kanakidou, M., Crutzen, P. J., 2000, Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modeling results, J. Atmos. Chem., 36, 157-230. https://doi.org/10.1023/A:1006300616544
  20. Reisner, J., Rasmussen, R. J., Bruintjes, R. T., 1998, Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model, Quarterly Journal of the J. R. Met. Soc., 124B, 1071-1107. https://doi.org/10.1002/qj.49712454804
  21. Singh, H. B., Zimmermann, P. B., 1992, Atmospheric distribution and sources of nonmethane hydrocarbons. In: Nriagu, J.O. (Ed.), Gaseous Pollutants: Characterization and Cycling, Wiley, New York, 177-235.
  22. Toll, I., Baldasano, J. M., 2000, Modeling of photochemical air pollution in the Barcelona area with highly disaggregated anthropogenic and biogenic emissions, Atmos. Environ., 34, 3069-3084. https://doi.org/10.1016/S1352-2310(99)00498-7
  23. University of North Carolina, 2009, http://www.ie.unc.edu/cempd/projects/mims/spatial/.
  24. U. S. Environmental Protection Agency, 2000, http://www.epa.gov/asmdnerl/images/beld3_web.gif.
  25. U. S. Environmental Protection Agency, 2002, ftp://ftp.epa.gov/EmisInventory/2002finalnei/biogenic_sector_data/.
  26. Vizuete, W., Junquera, V., McDonald-Buller, E., McGaughey, G., Yarwood, G., Allen, D. T., 2002, Effects of temperature and landuse on predictions of biogenic emissions in Eastern Texas, USA, Atmos. Environ., 36, 3321-3337. https://doi.org/10.1016/S1352-2310(02)00272-8
  27. Vukovich, J. M., Pierce, T., 2002, The Implementation of BEIS3 within the SMOKE Modeling Framework, Environmental Protection Agency Emissions Inventory Conference, Atlanta.