• Title/Summary/Keyword: ozone sensitivity

Search Result 84, Processing Time 0.032 seconds

Visible Foliar Injuries and Growth Responses of Four Betula sp. Exposed to Ozone (오존에 노출된 자작나무류 4수종 잎의 가시적 피해와 생장 반응)

  • 이재천;한심희;김장수;장석성
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.1
    • /
    • pp.29-37
    • /
    • 2002
  • This study was conducted to compare ozone sensitivity among Betula sp. by measuring visible foliar injuries and growth responses. Four Betula sp.(B. costata, B. davurica, B. platyphylla var.japonica and B. ermani) grown in the greenhouse, were transplanted in the plastic pots. One-year-old seedlings of four Betula sp. exposed to relatively high ozone concentration(100 ppb) for 8 h day$^{-1}$ for 5 weeks in fumigation chamber. We measured visible injuries, leaf numbers and leaf areas at the end of experiments, and growth effects were evaluated by measuring the relative growth rate(RGR) of height and diameter and the dry weights of leaf, stem and root once a week. Four Betula species showed the significant differences for growth responses by the ozone treatment. Growths of three species, except for B. ermani, were significantly reduced by the $O_3$ exposure. B. costata with leaf senescence at the early growing stage and B. davurica indicated highest visible foliar injury rate may be the sensitive species at the 100 ppb ozone concentration. Although the growth rate of B. ermani was reduced by 100 ppb ozone exposure at the early growing stage, B. ermani may be a tolerance species that recover the growth rate with the adaptation for the high ozone concentration.

Experimental Studies on the Effects of Ozone on Growth and Photosynthetic Activity of Japanese Forest Tree Species

  • Yamaguchi, Masahiro;Watanabe, Makoto;Matsumura, Hideyuki;Kohno, Yoshihisa;Izuta, Takeshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.65-78
    • /
    • 2011
  • Ozone ($O_3$) is a main component of photochemical oxidants, and a phytotoxic anthropogenic air pollutant. In North America and Europe, the current concentration of $O_3$ has been shown to have significant adverse effects on vegetation. In this review, we summarize the experimental studies on the effects of $O_3$ on the growth and photosynthetic activity of Japanese forest tree species to understand the present knowledge and provide sound basis for future research toward the assessment of $O_3$ impacts on Japanese forest ecosystem. Since the 1990s, several Japanese researchers have conducted the experimental studies on the effects of ambient levels of $O_3$ on growth and physiological functions such as net photosynthesis of Japanese forest tree species. Although the sensitivity to $O_3$ of whole-plant growth is quite different among the species, it was suggested that the current ambient levels of $O_3$ in Japan are high enough to adversely affect growth and photosynthetic activity of Japanese forest tree species classified into high $O_3$ sensitivity group such as Japanese beech. The N load to soil has been shown to reduce the sensitivity to $O_3$ of Japanese larch and increase that of Japanese beech. To establish the critical level of $O_3$ for protecting Japanese forest tree species, therefore, it is necessary to take into account the N deposition from the atmosphere. There is little information on the combined effects of $O_3$ and other environmental factors such as elevated $CO_2$ and drought on growth and physiological functions of Japanese forest tree species. Therefore, it is necessary to promote the experimental study and accumulate the information on the combined effects of $O_3$ and any other abiotic environmental factors on Japanese forest tree species.

A Study of Ozone Photochemistry in Different Physico-chemical Properties of Air Masses around the Mexico City Metropolitan Area (MCMA) Using Aircraft Observations in 2006 (항공관측자료를 이용한 2006년 멕시코시티 주변 기류의 물리-화학적 성질에 따른 오존의 광화학적 특성 연구)

  • Song, Sang-Keun;Shon, Zang-Ho;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.118-136
    • /
    • 2010
  • Photochemical characteristics of ozone ($O_3$) and its precursors such as $O_3$ budget and $O_3-NO_x$-VOC sensitivity were analyzed in different physico-chemical properties of air masses around the Mexico City Metropolitan Area (MCMA) using aircraft observations during March 2006. The physico-chemical properties of air masses were categorized into 5 groups: boundary layer (BL), biomass burning (BB), free tropospheric continent (FTCO) and marine (FTMA), and Tula industrial complex (TIC). Results from the $O_3$ budget analysis indicated that $O_3$ production for BL, FTCO, and FTMA (for BB and TIC) was mainly controlled by a photochemical production pathway, a reaction of NO with $HO_2$ (with $RO_2$), while the main pathway of photochemical $O_3$ destruction for BL, FTCO, and FTMA (for BB and TIC) was a reaction of $HO_2$ with $O_3$ (of $H_2$ with $O^1$(D)). In addition, most of air mass categories (especially FTCO) were estimated to be $NO_x$-sensitive for $O_3$ production with lower $NO_y$, higher ratios of the other indicator species (e.g., $O_3/(NO_y-NO_x$), $H_2O_2/HNO_3$, etc.), and the lower removal rate of radicals ($\leq$0.5) by the reaction of OH with $NO_2$ than those of the VOC-sensitive condition.

Application of the Health Risk Models Estimating Skin Cancer Caused by UVB Radiation (자외선(UVB) 노출 증가에 대한 피부암 위해도 예측 모델의 적용)

  • Shin, Dong-Chun;Lee, Jong-Tae;Chung, Yong;Kang, Na-Kyung;Yang, Ji-Yeon
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.1-10
    • /
    • 1996
  • A decrease in stratospheric ozone probably caused by chloroflurocarbons (CFCs) emissions, has been observed large parts of-the globe. It is generally accepted that if ozone levels in the stratosphere are depleted, greater amounts of shortwave ultraviolet radiationB (UVB) will reach the earth's surface, resulting in increased incidence of nonmelanoma skin cancer. In this study, we evaluated several mathematical models, such as a power and an exponential model, and a geometric model considering the surface area of a human body part and ages for the prediction of Skin cancer incidence caused by exposure to the UVB radiation. These models basically estimated the risk of skin cancer based on those measurements of the local ozone in stratosphere and UVB. Both were measured at a part of Seoul with a Dobson ozone spectrometer and Robertson-Berger UV Biometer for 1995. As a result, we calculated the point estimation applying a biological amplification factor (BAF), UVB radiation and other factors. We used a Monte-Carlo simulation technique with assumption on the distribution of each considered factor. The sensitivity analysis of model by there components conducted using Gaussian sensitivity method. The annual integral of UVB radiation was 2275 MED (minimal erythema dose)/yr. Also, an estimate of the annual amount of UVB reaching the earth's surface at a korea's latitude and altitude was 3328 MED/yr. The values of the radiation amplification factor (RAF) were ranged from 0.9 to 1.5 in Seoul. To give the effective factors required to model the prediction of skin cancer incidence caused by exposure to the UVB radiation in Korea, we studied the pros and cons of above mentioned models with the application of those parameters measured in Seoul, Korea.

  • PDF

RETRIEVAL OF VERTICAL OZONE PROFILE USING SATELLITE SOLAR OCCULTATION METHOD AND TESTS OF ITS SCNSITIVITY (태양 엄폐법에 의한 연직 오존 분포 도출과 민감도 실험)

  • 조희구;윤영준;박재형;이광목;요코다타쓰야
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.119-138
    • /
    • 1998
  • Recently measurements of atmospheric trace gases from satellite are vigorous. So the development of its data processing algorithm is important. In this study, retrievalof vertical ozone profile from the atmospheric transmittance measured by satellite solar occultation method and its sensitivity to temperature and pressure are investigated. The measured transmittance from satellite is assumed to be given by the limb path transmittance simulated using annual averaged Umkehr data for Seoul. The limb path transmittance between wavelengths $9.89{\mu}m$ and $10.2{\mu}m$ is simulated with respect to tangent heights using the ozone data of HALOE SIDS(Hallogen Occultation Experiment Simulated Instrument Data Set) as an initial profile. Other input data such as pressure and temperature are also from HALOE SIDS. Vertical ozone profile is correctly retrieved from the measured transmittance by onion-peeling method from 50km to 11km tangent heights with the vertical resolution of 3km. The bias error of $\pm0.001$ in measured transmittance, the forced error of $\pm3K$ in each layer temperature, and the forced $\pm3%$ error in each layer pressure are assumed for sensitivity tests. These errors are based on the ADEOS/ILAS error limitation. The error in ozone amount ranges from -6.5% to +6.9% due to transmittance error, from -9.5% to +10.5% due to temperature error, and from -5.1% to +5.4% due to pressure error, respectively. The present study suggests that accurate vertical ozone profile can be retrieved from satellite solar occultation method. Accuracy of vertical temperature profile is especially important in the retrieval of vertical ozone profile.

  • PDF

Numerical Study on the Impact of Meteorological Input Data on Air Quality Modeling on High Ozone Episode at Coastal Region (기상 입력 자료가 연안지역 고농도 오존 수치 모의에 미치는 영향)

  • Jeon, Won-Bae;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Kim, Dong-Hyuk;Park, Soon-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.30-40
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of SST spatial distribution on the result of air quality modeling. Eulerian photochemical dispersion model CAMx (Comprehensive Air quality Model with eXtensions, version 4.50) was applied in this study and meteorological fields were prepared by RAMS (Regional Atmospheric Modeling System). Three different meteorological fields, due to different SST spatial distributions were used for air quality modeling to assess the sensitivity of CAMx modeling to the different meteorological input data. The horizontal distributions of surface ozone concentrations were analyzed and compared. In each case, the simulated ozone concentrations were different due to the discrepancies of horizontal SST distributions. The discrepancies of land-sea breeze velocity caused the difference of daytime and nighttime ozone concentrations. The result of statistic analysis also showed differences for each case. Case NG, which used meteorological fields with high resolution SST data was most successfully estimated correlation coefficient, root mean squared error and index of agreement value for ground level ozone concentration. The prediction accuracy was also improved clearly for case NG. In conclusion, the results suggest that SST spatial distribution plays an important role in the results of air quality modeling on high ozone episode at coastal region.

The Ecophysiological Changes of Capsicum annuum on Ozone-Sensitive and Resistant Varieties Exposed to Short-Term Ozone Stress (오존 감수성 및 저항성 고추 품종의 생리생태 변화)

  • Yun, Sung-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.128-132
    • /
    • 2004
  • Ozone effects were studied by plant growth chamber to evaluate the impact of ozone ($O_3$) on the physiology of two hot pepper, Capsicum annuum L., cultivars, 'Dabotab' and 'Buchon'. Forty-day old plants with $5{\sim}7$ leaves were exposed to $O_3$ of <20 and 150 nL/L for 8h/d for 3 days. Net photosynthesis and stomatal conductance were measured and foliar injury was described. Foliar damage due to the treated $O_3$ was different from the varieties. 'Dabotab' was most sensitive to $O_3$ and 'Buchon' was resistant. Symptom of ozone damage on the leaves was bifacial necrosis. Decreases of net photosynthesis by $O_3$ were 56% and 40% on 'Dabotab' and 'Buchon', respectively. Decreases of stomatal conductance by $O_3$ were 66% and 63% on each variety. $O_3$ damage on net photosynthesis was started at the low levels of light on the two hot peppers. In addition, assimilation-internal $CO_2$ concentration curves were not different from the two varieties. In conclusion, $O_3$ closed the stomata and decrease net photosynthesis on hot peppers regardless of the ozone sensitivity on leaf injury, but the difference of ecophysiological responses between the two varieties was not found clearly.

Sensitivity of Five Clones of Populus alba × P. glandulosa Cuttings to Ozone Exposure in Open-Top Chambers in Relation to Their Growth Rates (Open-Top chamber 내(內)에서 오존에 노출(露出)시킨 현사시 5개(個) 클론의 생장량(生長量)과 오존에 대(對)한 민감성(敏感性)과의 관계(關係))

  • Kim, Tae Kyu;Lee, Kyung Joon;Kim, Goon Bo;Koo, Yong Bon
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.1
    • /
    • pp.105-115
    • /
    • 2000
  • This study was conducted to test a hypothesis that sensitivity of trees to ozone exposure was related to their growth rates. Two cultivars of Populus alba ${\times}$ P. glandulosa with different genetic growth potential were used for the comparison. Two clones(72-30, 72-16) of cultivar No. 4 with fast growing potential and three clones(71-28, 72-27, 72-19) of cultivar No. 2 with slow growing potential were propagated in early spring by cutting in $2-{\ell}$ plastic pots. They were grown outdoor for 5 months and exposed in late August for 30 days to 70 and 130ppb ozone in a open-top chambers(2.5m in diameter and 2m in height). Ozone concentration in a control chamber was maintained below 30ppb by filtering with activated charcoal. Each treatment was replicated twenty times. In a control chamber, cultivar No. 4 grew 73%, 64%, and 38% faster than cultivar No. 2 in leaf weight, root weight, and total dry weight, respectively. Visible injury was observed only in cultivar No. 4 in 130ppb treatment. Ozone treatment at both 70 and 130ppb decreased height growth, dry weight of leaf, root, and entire plants in all five clones. Particularly root growth was reduced by 39.7% and 13.8% in cultivar No. 4 and No. 2, respectively, in 70ppb treatment. Consequently, shoot/root ratio of cultivar No.4 was increased by 63.4%, while that of cultivar No.2 was increased by 22.1%. Stomatal conductance decreased more in cultivar No.4 than in cultivar No.2. Net photosynthesis of cultivar No.4 at 130ppb ozone decreased by 69.5%, while that of cultivar No.2 decreased by 31.5%. Above mentioned physiological responses of two cultivars to ozone strongly suggested that fast growing cultivar No.4 was more sensitive to ozone than slow growing cultivar No.2. It was concluded that sensitivity of trees to ozone exposure was closely related to their growth rates.

  • PDF

Growth, Photosynthesis and Rubisco Activity of Resistant Hybrid Poplar(Populus trichocarpa×P. deltoides) to Ozone Exposure: A Link with Compensatory Strategy (오존에 노출(露出)시켰을 때 저항성(抵抗性)을 갖는 잡종(雜種)포플러의 생장(生長), 광합성(光合成) 그리고 Rubisco 활성(活性)에 관(關)한 연구(硏究): 수목(樹木)의 보상전략(補償戰略)과의 관계(關係))

  • Woo, Su-Young
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.80-86
    • /
    • 1997
  • The objective of this study was to investigate how resistant poplar hybrid makes compensation to ozone stress. Growth, net assimilation rate and initial Rubisco activity were investigated. This study elucidates the physiological mechanisms associated with ozone sensitivity and resistance in 3 selected $F_2$ hybrids, a family originating from a cross between Populus trichocarpa${\times}$P. deltoides. Open-top chambers were used. Ozone concentrations varied from 90 to 115 ppb for 126 days, 6 to 9 hours in a day. This study tested the hypothesis that resistant poplar hybrid maintains the biomass production to ozone exposure via increased net assimilation rate and Rubisco activity. Growth, biomass, net assimilation rate and initial Rubisco activity were generally reduced by ozone treatment. In the tree parts, root under ozone stress was the most sensitive part. Reduced allocation of photosynthates to root growth might be due to increased respiratory demands for maintenance and repair of aboveground tissue damaged by ozone stress. Maintenance or increases remaining leaves in photosynthetic rates and Rubisco activity in resistant clone in response to ozone treatment were the results of biological compensation to ozone stress.

  • PDF

Numerical Simulation of Complicated Photochemical Reactions Occurring in the Atmosphere (대기내 발생하는 복잡한 광화학반응에 대한 수치실험)

  • Won Gyeong-Mee;Kim Yoo-Keun;Lee Haw-Woon;Kim Hee-Jeoung
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.203-209
    • /
    • 2006
  • In predicting oxidants concentration, the most important fact is to select a suitable photochemical reaction mechanism. Sensitivity analysis of $O_3$ and other important photochemical oxidants concentrations was conducted by using CBM-IV model. The predicted oxidants concentration was considerably related with the initial concentration of formaldehyde, $[NO_2]/[NO],\;NO_x$, RH and RCHO. As the initial concentration of formaldehyde increased, concentration of $NO_2$ increased. $O_3$ concentration was proportional to the $[NO_2]/[NO]$ ratio. When the initial concentrations of RH and RCHO were high, photochemical reaction was more reactive, including more rapid conversion of NO to $NO_2$ and increased oxidants. Also, the sensitivities of ozone formation to rate constants, $K_l,\;K_2\;and\;K_3$ in the $NO_2$ photolysis were studied.